
rstb.royalsocietypublishing.org
Review
Cite this article: Turner R. 2016 Uses,

misuses, new uses and fundamental

limitations of magnetic resonance imaging in

cognitive science. Phil. Trans. R. Soc. B 371:

20150349.

http://dx.doi.org/10.1098/rstb.2015.0349

Accepted: 24 February 2016

One contribution of 16 to a Theo Murphy

meeting issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.

Subject Areas:
neuroscience

Keywords:
magnetic resonance imaging, brain function,

cerebral blood volume, neuroanatomy, cortical

layers, myeloarchitecture

Author for correspondence:
Robert Turner

e-mail: turner@cbs.mpg.de
& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Uses, misuses, new uses and fundamental
limitations of magnetic resonance
imaging in cognitive science

Robert Turner

Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany

RT, 0000-0001-5055-9644

When blood oxygenation level-dependent (BOLD) contrast functional

magnetic resonance imaging (fMRI) was discovered in the early 1990s, it

provoked an explosion of interest in exploring human cognition, using brain

mapping techniques based on MRI. Standards for data acquisition and

analysis were rapidly put in place, in order to assist comparison of results

across laboratories. Recently, MRI data acquisition capabilities have improved

dramatically, inviting a rethink of strategies for relating functional brain

activity at the systems level with its neuronal substrates and functional connec-

tions. This paper reviews the established capabilities of BOLD contrast fMRI,

the perceived weaknesses of major methods of analysis, and current results

that may provide insights into improved brain modelling. These results have

inspired the use of in vivo myeloarchitecture for localizing brain activity, indi-

vidual subject analysis without spatial smoothing and mapping of changes

in cerebral blood volume instead of BOLD activation changes. The apparent

fundamental limitations of all methods based on nuclear magnetic resonance

are also discussed.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
Introduction

‘Activity maps are of limited value unless they intersect with detailed neuroanatom-
ical information’

Randlett et al. [1].
In the early 1990s, magnetic resonance imaging (MRI) scientists discovered that

the already-known difference in magnetic susceptibility between oxygenated

and deoxygenated haemoglobin could be used as an index of local brain activity

[2–4]. Although the effect, whose amplitude depends both on changes in blood

oxygenation and on regional cerebral blood volume (CBV), must still be con-

sidered to be somewhat empirical, considerable insight has been achieved in

the past 20 years into its origins in neurovascular coupling, and its relevance to

modelling of brain operations.

Because MRI is remarkably free from harmful side effects up to static field

strengths of at least 8 T, the blood oxygenation level-dependent (BOLD) effect

was very rapidly adopted by brain scientists who previously had access only

to the somewhat invasive and spatially rather imprecise technique of positron

emission tomography (PET) [5], with its unavoidable radiation dose.

In the early years of fMRI, most cognitive neuroscience studies involving im-

aging were performed using MRI scanners with a field strength of 1.5 T, equipped

with gradient coils capable of producing gradients of only about 10 mT m21,

single-channel radiofrequency (RF) receiver coils and with comparatively poor

temporal stability. To make the most effective use of such equipment, researchers

widely adopted strategies for data analysis that in hindsight can be seen as mis-

leading. This has become clear with the introduction of much higher field MRI
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scanners for human studies, up to 7 T, which have stronger

magnetic field gradient coils, up to 64 channels of RF reception,

and greatly improved temporal stability. The much higher

signal-to-noise ratio (SNR) now makes it possible to localize

brain functional activity in vivo within identifiable neural sub-

strates, with reasonably well-known networks of axonal

connections, allowing a game-changing approach to cognitive

science and cognitive psychology.

This short review discusses the following questions:

1. What can be learned about cognition from structural and

functional BOLD MRI that other techniques cannot

provide?

2. What are the major flaws in current uses of fMRI?

3. Are there other ways of analysing MRI/fMRI data that

provide deeper insight?

4. Are there developments in MRI and fMRI methodology

that minimize the assumptions needed?

5. What are the likely fundamental limitations of all MRI

methods?

6. What are the poorly explored questions relevant to fMRI?

7. What are the most synergetic other techniques?

1. What can be learned about cognition from
structural and functional blood oxygenation
level-dependent magnetic resonance imaging
that other techniques cannot provide?

Many researchers take the word ‘cognition’ to mean the pro-

cesses internal to the brain that culminate in the encoding of

memories, planning of action or directly as immediate actions.

The work involved in these processes is performed by neurons

assisted by glial cells, and requires energy, which is supplied

almost entirely by oxidative phosphorylation, the glucose

and oxygen coming mostly from the capillaries and terminal

arterioles that perfuse brain tissue [6,7]. During neuronal

activity, substances are released—notably nitric oxide—that

have a direct effect on local blood volume and blood flow.

Although the increased metabolic demand associated with

neural work results in a higher extraction of oxygen from the

blood, the molecules released during synaptic activity cause

expansion of the cortical arterioles and capillaries, which nor-

mally overcompensates for this increased oxygen extraction

[8–10]. The end result is that the blood oxygenation typically

increases, giving rise to the increase in BOLD signal observed

in MRI conventionally associated with ‘brain activity’.

It is fair to claim that no other experimental technique can

provide such detailed maps of human brain activity, with

reasonably uniform sensitivity throughout the brain volume.

The anatomical location of functional activity can be assigned

by referring to structural brain images, usually so-called

T1-weighted images, which can be obtained from the same

subject’s brain, or as an average across the brains of a group

of subjects, nonlinearly warped into a suitable template

brain. Reproducibility of the basic effect is well established

[11], and the application of diffusion-weighting magnetic

field gradients to associated MRI acquisitions allows approxi-

mate estimation of axonal connections [12]. In principle,

brain structure, function and connectivity can be investigated

at a spatial scale of better than 1 mm in individual human sub-

jects. Thus, one can argue that if cognitive neuroscience is
defined as the development of explanatory models of brain

function based on known neuroanatomy and connectivity,

BOLD fMRI is the best tool that we currently have.

However, an important question remains: what exactly do

we mean by ‘brain activity’ [13]? There is now strong evi-

dence that the amplitude of BOLD signal is well correlated

with local field potential [14] and increases in gamma-band

electrical activity [15], and it is quite often correlated with

spike frequency [16]. However, as yet there is no unambigu-

ous way to discriminate whether a positive BOLD signal in a

given brain location arises from excitatory or inhibitory out-

puts from that location [17–19]. The spatial localization of

increases in BOLD signal is consistent with electrocortico-

graphic (ECoG) recordings [20] within millimetre accuracy.

However, ever since the discovery of BOLD contrast it has

been noted that changes in blood oxygenation owing to

local changes in oxygen uptake and blood volume are carried

downstream. This entails that BOLD contrast, when obtained

with the most usual technique of gradient-echo MRI, is maxi-

mal at the cortical surface and in discrete pial veins [21].

Nevertheless, there is wide agreement that the BOLD signal

provides fairly reliable information regarding the location

of changes in brain electrical activity.

However, it is still very unclear what level of granularity

needs to be considered in order to ensure the plausibility of pro-

posed models. Over the years from 1980 until about 2010,

cognitive neuroscience studies that employed neuroimaging

mostly adopted a broad-brush, coarse-grain approach, inspired

largely by analysis methods first developed for PET. From this

perspective, typically described as statistical parametric map-

ping [22], the practice of spatially smoothing the raw BOLD

fMRI data (acquired at approx. 3 mm resolution) to roughly

the spatial resolution of processed PET data (approx. 10 mm

resolution), before further analysis, was regarded as unproblem-

atic, and indeed offered advantages in regard to sensitivity

and reproducibility. At this spatial scale, useful conclusions

could be drawn regarding which gyrus of the brain played a

more important role in a particular brain task. Claims still con-

tinue to be made for much more precise localization within

each lobe, resulting from a strategy of statistical thresholding

that can deceptively produce what appear to be highly loca-

lized apparent regions of activity even when the images

have been highly smoothed before analysis.

Regarding cognitive studies, strong objection [23,24] has

been raised to the practice of statistical mapping of heavily

smoothed and thresholded functional brain imaging data, label-

ling its findings as ‘neo-phrenology’ [24] and committing the

mereological fallacy [23] —that is, ascribing to parts of a system

attributes that can only be coherently ascribed to the entire

system. A recent very well-informed critique of many aspects

of current practice can be found in Shifferman [25]. It is outside

the scope of this review to elaborate further on this point.

At the most general level, however, fMRI has done much to

support the idea of cortical segregation, that specific brain func-

tions can be assigned to relatively compact cortical areas that

can be labelled with a description of the function. Thus, we

have visual areas, auditory areas, motor and somatosensory

areas and many others, which are becoming progressively sub-

divided as experimental designs become more subtle and

imaging techniques improve. Over the past 20 years, fMRI

has been able uniquely to demonstrate the fine structure of

such maps [26,27], notably in elucidating the spatial structure

of responses to objects at different positions in the visual
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field, touch and motion of different parts of the body, numer-

osity of visual objects [28] and variations of auditory pitch.

Such studies have invariably attempted to use all the spatial

resolution that fMRI can provide, avoiding spatial smoothing

except for cosmetic reasons at a final stage of analysis [27].

The data obtained from such mapping experiments are likely

to be important in the formulation and testing of theories of

perception and motor control.

Furthermore, the concept of neuronal receptive fields [29]

has recently been extended to posit the existence of population

receptive fields [30], and a kindred concept, that of brain voxel

encoding [31]. Such methods, reviewed by Poldrack & Farah

[32], which can involve rich, quasi-naturalistic batteries of

stimuli and a small number of subjects, provide us with

detailed cortical maps that can be surprisingly extensive,

throwing into question simplistic functional parcellations

based on simpler experimental paradigms, drastic spatial

smoothing and rigorous statistical thresholding. This strategy

is discussed further in §3.
0150349
2. What are the major flaws in current uses of
functional magnetic resonance imaging?

In the early days of BOLD fMRI (1990s), leading imaging

neuroscience laboratories, such as the Functional Imaging

Laboratory in Queen Square, London, developed the still-

current methodology [33], which attempts to link brain

location, neuroanatomy and function at a spatial scale of no

better than 8 mm—about as close as anyone dared to expect

that corresponding cortical areas could be located across

brains. Standard practice included spatial smoothing of func-

tional images by 8 mm, and group averaging. Among several

strong reasons for this procedure, smoothing allowed for the

residual mismatch of actual cortical areas after structural

brain images had been spatially normalized into a standard

template brain registered within MNI space, so that positive

results could be anticipated from group averaging across

normalized brains. Spatial location of activity was usually

identified on a maximum probability atlas of Brodmann

areas derived from the cytoarchitecture of 10 cadaver brains.

Very few researchers were then aware that MRI could already

be made quite sensitive to myeloarchitectural details [34].

The general linear model was used to quantify the correl-

ation between the time course of the signal change in each

voxel of the smoothed images with the applied functional para-

digm. The resulting analysis packages of SPM (http://www.

fil.ion.ucl.ac.uk/spm/), FSL (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/), Brain Voyager (http://www.brainvoyager.com/)

and AFNI (http://afni.nimh.nih.gov/afni) continue to domin-

ate the field of imaging-based cognitive neuroscience, with

SPM still the most popular.

However, this analysis strategy entails several poorly jus-

tified assumptions [35,36], few of which are discussed in the

cognitive science literature. These inevitably exclude the

possibility of identifying neural competence with neuroana-

tomical substrate, and hence the formulation of systems

neuroscience models that can benefit from prior cellular

neuroscience knowledge.

In principle, the components of a system should be clearly

definable, and themselves well understood. Turner [35] dis-

cusses this topic in detail, arguing that in vivo parcellated

maps of cortex and subcortex [37], which can be acquired
even at 3 T using quantitative MRI, will provide a more reliable

and reproducible guide to brain components than those cur-

rently used, giving models of brain function that use our

remarkably rich knowledge of neuroanatomy. A further

viable addition to this may be the distinction between input

and output cortical layers, probably achievable with fMRI

spatial resolution of 0.5 mm or better (see §4 below).
3. Are there other ways of analysing magnetic
resonance imaging/functional magnetic
resonance imaging data that provide deeper
insight?

(a) Multivoxel pattern analysis
One way to avoid the pitfalls of premature spatial smoothing,

specifically the merging together of neighbouring activations

that should remain distinct because they result from different

neural operations, is to use machine learning techniques to

discriminate spatial patterns of brain activity specific to a par-

ticular stimulus or task from other related stimuli. This

approach [38], termed multivoxel pattern analysis (MVPA),

does not require spatial smoothing, and thus avoids the mistaken

assumptions mentioned above. Although the ‘searchlight’

approach to MVPA of Kriegeskorte [37] effectively smooths

the image data, this drawback can be avoided, as pointed out

by Stelzer [39], by the use of feature weight mapping.

(b) Voxel encoding and population receptive field
mapping

One recent approach for modelling fMRI data begins with

providing the experimental subject with a very large number

of related stimuli or tasks, often naturalistic. These are analysed

into a large set of features. The goal is to determine the func-

tional repertoire of each grey matter voxel, as encompassed

by a model that characterizes the ‘feature space’ of the stimuli.

The correctness and completeness of the model in predicting

brain activity to new stimuli can be tested on a separate valid-

ation dataset [31]. Such models are called encoding models,

because they describe how information about the sensory

stimulus is encoded in measured brain activity. Remarkable

cortical maps, for instance depicting the space of semantic

categories [40], have been generated using these methods.

For such purposes, spatial smoothing would be quite unaccept-

able. Hence, this technique avoids earlier questionable

assumptions, and lends itself to research in which myeloarchi-

tecture, cytoarchitecture and functional repertoire can be

directly compared.

Results using this approach reveal that specific features of

experience often have widely distributed spatial representations

in the brain [40]. However, clustering can also be noted, often in

accordance with linguistic or common-sense categorization of

experience and action. Cognitive neuroscience may benefit

from deeper understanding of these data-driven insights into

the categorization of experience, which may avoid the Procrus-

tean tendency to force our experience into predefined inherited

conceptual frameworks that may have little affinity with how

brains actually operate [41].

The population receptive field mapping approach [30] esti-

mates a model of the population receptive field for voxels in
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visual cortex that best explains measured fMRI responses

resulting from a series of various visual stimuli. This can

be regarded as a special case of voxel encoding, applying

specifically to visual stimuli and visual cortex.
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4. Can novel magnetic resonance imaging and
functional magnetic resonance imaging
methods minimize the assumptions needed?

Recent developments in MRI using the new generation of

whole-body scanners at field strengths of 7 T and above have

shown conclusively that submillimetre spatial resolution is

now achievable for structural, functional and connectivity

imaging [42–45]. For functional BOLD and structural imaging,

submillimetre resolution has even been achieved with the latest

generation of 3 T scanners. Such a resolution, consistent with

the size of cortical columns, may constitute a critical threshold

regarding realistic mechanistic explanations of brain func-

tion [46]. Furthermore, the recognition that quantitative MRI

enables assessment of myelin and iron density within the

living brain [47] offers a fresh outlook on systems neuroanat-

omy, in which a renewed study of myeloarchitecture will

play a major role, and the interaction between brain iron, dopa-

mine and neuromelanin can be explored in the context of brain

function [48].

(a) Brain structure
Use of high-field MRI in human brain, particularly at 7 T,

enables in vivo individual-specific maps of genuine cortical

microstructure [49,50], which can be correlated with cortical

function in the same brain [51,52]. Quantitative structural

maps of the longitudinal relaxation time T1 [52] of entire

brains can be obtained with better than 0.5 mm isotropic reso-

lution, which closely resemble myelin-stained histological

sections at low-resolution [35,53]. High-quality structural data

revealing myelin content can also be achieved at 3 T [54,55],

but with correspondingly lower spatial resolution. Cécile &

Oskar Vogt [56], pioneers in myeloarchitecture research in the

first half of the twentieth century, showed that there is good

concordance between structural parcellations of the cortex

based on myeloarchitecture and on cytoarchitecture [57,58].

Hence, ‘in vivo Brodmann mapping’ [35,59,60] can be per-

formed using MRI-observable differences in grey matter

myelination. Cortical areas known from post-mortem studies

to be heavily myelinated such as primary motor, somatosen-

sory, auditory, visual cortex [61] and area V5-MT [62] are

easily discriminated from surrounding less-myelinated regions.

Moreover, surface registration [63] across subjects of T1 maps of

the cortex can be achieved efficiently and precisely, impressively

matching corresponding cortical areas. Using the high spatial

resolution available at 7 T, and a realistic algorithm modelling

the effect of cortical folding on layer position [64], this matching

provides cortical profiles of myelination comparable to the Vogt

histological findings [56]. The higher spatial resolution available

using prospective motion correction [65], together with precise

averaging of individual subject brains across multiple imaging

sessions, will enable still finer discriminations of cortical areas.

MRI techniques that can measure dendritic density [66] and

capillary density will also assist in this endeavour.

De Martino [45] has recently shown that functional and

structural data for auditory cortex can be elegantly combined,
to suggest that primary auditory cortex can be pragmatically

defined as the region of high myelination (short T1) on the

crown of Heschl’s gyrus in the temporal lobe. Thus, like

can now be compared with like in group studies—averaging

of structural and functional results can be performed in an

area-wise manner, without spatial smoothing. This matching

of function and structure also offers the potential to integrate

the findings of systems neuroscience with those of cellular

neuroscience, for instance to explain the functional compe-

tence of a cortical area in terms of its neuronal makeup

and configuration.

The rebirth of scientific interest in myeloarchitecture [67]

holds the promise of deeper insights into principles of cortical

organization. Once the location of changes in brain activity in a

given subject’s brain can be identified via their own native

myelin-based cortical atlas, the corresponding cytoarchitecture

can be looked up in a concordance atlas. When combined with

high-quality crossing-fibre dMRI tractography such infor-

mation could greatly assist mechanistic explanation of brain

function. With the achievable isotropic resolution of 300 mm

in structural MR images, there are no more than a few thou-

sand pyramidal neurons within each voxel. In brain locations

showing columnar structure, many of such neurons are likely

to participate in network activity cooperatively.

The high spatial resolution of long echo-time gradient-

echo structural phase images at 7 T has an additional benefit.

In the form of neuromelanin in the basal ganglia, iron

provides excellent contrast-to-noise ratio, and hence their pre-

cise delineation. Quantitative maps of magnetic susceptibility

give even clearer pictures [68–70] of these under-researched

structures, vital to human life.
(b) Brain function
As mentioned above, work at 7 T in recent years has produced

remarkable improvements in functional imaging (reviewed by

Van der Zwaag [44]), to the level of 0.5 mm isotropic resolution

[42,45,71]. Use of T2-weighted three-dimensional gradient-

recalled echo and spin-echo imaging has become an option

for very high spatial resolution [71], owing to its high SNR

per unit time and relative insensitivity to larger draining

veins. Parallel acquisition, both in-plane [42] and simultaneous

multislice [72,73] has been the mainstay of 7 T fMRI, allowing

images of high spatial resolution and good image quality

to be obtained with remarkable speed. Functional studies

are proceeding even with small deep structures such as the

subthalamic nucleus [74].

However, perhaps the most exciting development in fMRI

at high field is the implementation of high-sensitivity methods

for measuring changes in regional CBV. These methods [75]

use a preparatory inversion pulse to null the MRI signal from

the blood, leaving a signal from brain tissue alone which

varies linearly with the blood volume, and thus with the

state of brain activity. A modification of this technique enables

submillimetre resolution at 7 T [76]. CBV appears to be locally

controlled by pericytes responsive to activity in neighbouring

neurons within the thickness of the cortex [77–79]. Thus, the

ability to monitor CBV non-invasively in real time may greatly

improve investigation of variations of neural activity at the reso-

lution of the cortical layer [80–83]. Further evidence for the

layer-specificity of CBV mapping comes from a study [84] of

the olfactory bulb in rat brain, which shows good separation
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Figure 1. Single subject axial section images acquired with echo planar imaging slices, with colour-overlaid BOLD activation maps during finger movement and
imagined finger movement (figure courtesy of Robert Trampel). Spatial resolution 0.75 mm isotropic. (a) Axial section acquired using zoomed EPI shows raw data
quality. The yellow line indicates the central sulcus, with ‘hand knob’. (b) Activation map during ‘tapping’ versus ‘rest’. (c) ‘Moving’ versus ‘rest’. (d ) Contrast of
‘tapping’ versus ‘moving’. (e) Activation map during imagined finger movement. Colour bars indicate z-scores. Functional maps thresholded at p , 0.05, using false
discovery rate.
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of CBV response for stimuli which differentially excite neurons

in specific cortical layers.

(c) Brain connectivity
Brain connectivity can be approximately evaluated using diffu-

sion-weighted imaging [85,86] and by analysing spatial

correlations in task-absent BOLD signal [87] (so-called resting

state). Diffusion-weighted imaging uses large magnetic field

gradient pulses between spin excitation and data acquisition

to label water molecular motions [88]. Work at 7 T with gradi-

ents of 80 mT m21 [43,89] gives excellent delineation of fibre

orientations, with spatial resolution up to 0.8 mm isotropic.

Here, fibre tracts can be seen to bend into the sulcal banks, as

they should, in contrast with the more standard spatial reso-

lution of 3 mm, where computed tracts appear to terminate

on the gyral crowns. However, diffusion imaging has import-

ant limitations in depicting brain connections (see the critical

papers of Jones [86] and Thomas et al. [90]).

Functional connectivity studies at 7 T, which benefit greatly

from the improved SNR and resolution, are increasing in

number. For an excellent primer, see Power [91], and for current

examples, see Raemakers [92]. There is still considerable

controversy regarding optimal methods for extracting connec-

tivity information [93] and the neural processes underlying

the observable resting state networks remain somewhat obscure

[94]. However, their patterns are considered to be useful heur-

istic guides to brain connectivity, even to the point of

providing an alternative method for cortical parcellation [95].

(d) Layer-dependent functional magnetic resonance
imaging

The submillimetre spatial resolution available at 7 T for

functional imaging of human brain allows investigation of

variations of BOLD contrast across the thickness of the cortex.

In a pioneering study in 2011, Trampel et al. [96] measured acti-

vation in the hand area of human primary motor cortex. They
used gradient-echo BOLD fMRI to study activation for three

motor tasks: finger tapping, finger movement without touch

and motor imagery. The primary motor cortex was unambigu-

ously identified by its anatomical location and high myelin

content, as indicated by its characteristically short T1. At 7 T,

structural data were obtained with 0.5 mm isotropic resolution,

and fMRI data with 0.75 mm isotropic resolution (figures 1 and

2). Cortical activation profiles specific to each motor condition

were computed, and averaged across the activated area at

four different cortical depths, and across nine human volunteer

subjects. During the motor imagery condition, lacking motor

output from layer V of the primary motor cortex, the BOLD

signal at a depth corresponding to this cortical layer was

found to be reduced (figure 2), by comparison with the signal

from other cortical layers in this condition.

As mentioned in §1, however, the BOLD signal represents

the history of blood oxygenation changes as blood travels from

the pial arteries into the diving arterioles and thence into

capillaries and veins. As such, this signal cannot provide a

precise layer-specific indication of oxygen extraction. In the

study just described, the statistically highly significant differ-

ence found in cortical profiles between the tapping and

motor imagery conditions is noteworthy, but should not be

over-interpreted. (See further discussion in §5a(ii) below.)
5. What are the likely fundamental limitations of
all magnetic resonance imaging methods?

Most MRI acquisitions depend on the interaction of the

minute magnetic moments of the protons comprising the

nuclei of hydrogen atoms in water molecules with feasible

applied magnetic fields—static, audiofrequency and radio-

frequency. It is only the vast abundance of these protons in

brain tissue that enables any NMR signal to be observable.

Increasing the static field incurs increasingly severe prob-

lems of RF engineering, RF safety, perceptible physiological
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mean BOLD signal of nine subjects at four different cortical depths in primary
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effects, subject acceptability, high gradient strength require-

ments and expense. At 7 T, where several of these problems

now have adequate solutions, the best structural whole-brain

spatial resolution achievable in a scanning session of 1 h is

likely to be about 300 mm isotropic. Higher resolution may be

achieved with part-brain acquisition, with averaging across

sessions to achieve adequate SNRs. Prospective motion

correction [65,97] will be required to ensure image quality.

In regard to functional studies, the magnetic fields associ-

ated with coherent neural activity, while easily observable

using magnetoencephalography techniques, are too small to

be localized using MRI methods [98]. So the only currently

practical way that MRI can contribute to studies of brain

function is via its sensitivity for the vascular response to

neural activity.

The MR signal associated with this vascular response can

depend on the blood’s velocity, volume fraction and oxygen-

ation. MRI sequences can be designed to be sensitive to one or

more of these parameters, but there are fundamental limitations.
(a) Specific limitations of blood oxygenation
level-dependent

(i) Ambiguity
The BOLD signal is a non-quantitative index of changes in both

blood volume and oxygen extraction. A quantitative measure
of changes in oxygen utilization, or brain work, would be

more desirable. While this can be estimated by combining

BOLD measurements with cerebral blood flow measurements,

following Davis [99], the weak link is the poor sensitivity of

CBF measurement by MRI. The sensitivity is improved at 7 T,

but at this field strength another fully quantitative measure

of brain activity becomes feasible, non-invasive measurement

of CBV using a modification of vascular space occupancy

(VASO) [82,100].
(ii) Poor layer-specificity
Blood volume is apparently controlled by resistance arterioles

and pericytes, with little functional change in pial veins,

and is thus spatially quite well matched to demand, but

changes in blood oxygenation and blood flow are more

non-local [21]. Gradient-echo (GE) BOLD changes are maxi-

mal at the cortical surface, and may even be detected in

pial veins several millimetres downstream from the active

grey matter. To minimize this problem, some researchers

advocate spin-echo BOLD, but its sensitivity is much lower

than GE-BOLD, even at 7 T [101,102]; and even with spin-

echo acquisition, much BOLD signal arises from principal

intracortical veins [103,104]. Because most of the signal

arises from larger venules and surface veins, the effective

GE-BOLD resolution in the plane of the cortex cannot be

better than the spacing of principal intracortical veins

(about 0.7 mm) [10,105,106]. In addition, the cortical profile

of BOLD signal represents a spatial convolution of task-

driven changes in oxygen extraction with local blood flow,

modulated by changes in blood volume, which blurs out the

layer-dependence of underlying neural activity. Capillary per-

fusion, as measured using arterial spin labelling (ASL),

should, in principle, be well localized to neural activity [107],

but the relatively low sensitivity of this technique in humans

has deterred its widespread usage.

A recent simplified model of the blurring effect [108] pre-

dicts a cortical depth effect that roughly fits experimental

data, confirming that the cortical profile of the BOLD signal

cannot be naively interpreted as a profile of neuronal activity.

An fMRI study concerning layer-specific feedback in visual

cortex [109] suggests that where sufficient spatial separation

exists between top-down and bottom-up input layers,

BOLD contrast may still be enough to discriminate their

characteristic patterns of activity.
6. What are the poorly explored questions
relevant to functional magnetic resonance
imaging?

(a) Direction of causation
Graph or network models of brain function can only make

testable predictions if they include a measurable variable

describing the direction of causation between separate corti-

cal or subcortical areas. This is accessible neuroanatomically

only in cadaver brain, using anterograde and retrograde

tracer methods.

The graph theory-based dynamic causal modelling

approach attempted to simplify the causality problem by

invoking neural mass modelling, but lacks neuroanatomical

realism [110]. Sadly, the experimental variance explained by
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Figure 3. Functional MRI using BOLD contrast and cerebral blood volume maps acquired with slab-selective vascular occupancy imaging (VASO). Comparison of single-
subject activation maps generated by finger tapping, in an axial section through the central sulcus. Echo-planar data acquisition, resolution 0.74 � 0.74 � 2 mm3,
TE ¼ 20 ms, TR ¼ 1.5 s (interleaved VASO and BOLD acquisition; figure courtesy of Laurentius Huber).
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the best-fitting graph rarely exceeds only a few per cent [110].

Hence, the results have very little predictive power, and

consequently little scientific value.

As an alternative approach to the causality question, some

researchers [96,111] advocate the use of prior neuroanatom-

ical knowledge of neuronal circuitry. Histology and animal

brain research can define the specific cortical layers in which

input and output pathways terminate. In principle, activity

in input layers can be driven by experimental conditions, and

the behavioural effects of activity in output layers can be

experimentally observed. Where input and output cortical

layers are distinguishable by fMRI, causal relationships

between brain areas could thus be empirically validated.

Similarly, where the input layers of top-down and bottom-up

afferents are spatially separated, a causal direction could be

established for the neural activity corresponding to a given

task. The Trampel et al. study [96] summarized above (figures 1

and 2) relies on the fact that the output to the corticospinal tract

of motor nerves from agranular primary motor cortex M1 arises

almost entirely from large pyramidal neurons in layer V. Thus,

in the motor imagery condition, with no motor output, one

might expect a comparatively lower activation signal from

layer V—as was indeed observed. Fortunately, the cortical

thickness in M1 is unusually large, about 4 mm, which facili-

tated the discrimination of specific cortical layers using fMRI.

Other experimental paradigms offer themselves for this

type of study. For instance, primary auditory cortex is well

known to be activated by auditory input, but also strongly

modulated by auditory imagery [112]. Sensory input to audi-

tory cortex arrives in layer IV, whereas top-down modulation

involves neurons in layers I and VI [112]. Similar mismatches

of input and output layers are found in other primary sensory

areas. Research with human subjects is particularly valuable

in this context, because of our remarkable compliance and

proficiency with the type of laboratory tasks required to

tease out differential activity across the cortical thickness.

However, as noted previously, BOLD fMRI can provide

at best a blurry, smeared-out account of layer-dependent

activity, because of the cross-layer ‘bleed’ of oxygenation

changes. The recent work of Huber [82], enabling enhanced

sensitivity of CBV measurements at high field, offers an

alternative form of functional imaging in which the variation

of the signal with cortical depth more closely matches the

expected neuronal activity (figure 3), without the maximum

at the cortical surface found with BOLD imaging. As com-

mented in §4(b), this is consistent with local control of

blood volume, as suggested by the intracortical distribution

of pericytes [79].
(b) Prevalence of columnar organization
Moon et al. [105] compared the spatial specificity of BOLD and

CBV measurements in studies of columnar structure in feline

cortex, showing clear benefits for CBV. A recent fMRI study

of cortical columns in auditory cortex [113] further encourages

a more detailed exploration of the granularity of the human

cortex, which may vary with brain area and function. Is colum-

nar organization a universal principle [114,115]? Or does

experience-driven cortical self-organization result in columnar

organization only in specific areas in which this wiring strategy

is optimal? In order to focus efforts using MRI to investigate

such questions, a deeper understanding of cortical functional

anatomy, based on animal studies and post-mortem human

brain histology, would be helpful.

(c) Sparse encoding versus population encoding
ECoG studies in entorhinal cortex [116] show that individual

neurons, each responsive to a wide range of visually pre-

sented examples of a single object or person, are sparsely

distributed within this cortical area. Even if a BOLD signal

from such an area could be obtained from presentation of a

particular object, this does not mean that the entire area rep-

resents that object, or even class of objects. By contrast,

spatially mapped cortical areas such as retinotopic areas

conversely use population encoding as an important compu-

tational principle. Research with invasive techniques on

animal models will surely reveal many more instances of

each type of encoding—which ultimately might be found to

correlate with the distinctive cyto- and myeloarchitecture of

specific brain regions.
7. What are the most synergetic other
techniques?

Currently, in the view of the author, the most exciting non-

invasive technique for quantitative studies of cognition in

human brain is the measurement of CBV, using MRI blood-

nulling techniques. With the adequate SNR available at high

magnetic field, this offers the hope of layer-specific identifi-

cation of induced neural activity. Careful comparisons with

spin-echo BOLD and three-dimensional gradient and spin-

echo BOLD are urgently needed, together with combined

electrocorticographic and VASO animal brain studies with

multicontact electrodes.

Advanced histological studies may also shed light

on the optimal functional MRI technique for exploring
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layer-dependent activity. The key question is: is there a correl-

ation between the distributions of pericytes, which locally

control blood flow and hence blood volume, and mitochon-

dria, which generate the ATP molecules essential for the

various neurochemical and neuroelectrical processes that

constitute functional activity?

Cadaver brain cortical sections can be selectively stained

to reveal these components. Mitochondrial density can be

inferred quite well using stains for cytochrome oxidase, and

pericytes can be selectively stained [79]. Good spatial correl-

ation would suggest that cortical profiles of changes in CBV

map the layer dependence of neuronal function. Here, ‘neur-

onal activity’ would be compactly defined as activity that

costs energy (see discussion in §5a(i) above). Early work by

Borowsky [117] showed good qualitative correlation between

capillary density and cytochrome oxidase staining in several

regions of rat brain. This suggests the need for much more com-

prehensive studies in cadaver human brain, in which cortical

profiles of pericyte density, cytochrome oxidase density and

capillary density are all compared.
0349
8. Summary and conclusions
This review has described some of the historical development

of MRI-based neuroimaging techniques currently used in

cognitive science research. Weaknesses in the most popular

analysis strategies are identified. Game-changing develop-

ments in MRI and fMRI capabilities are then discussed that

show great promise for bridging the gap between cellular

and systems neuroscience. At magnetic field strengths of 7 T

and above, data with submillimetre resolution can be acquired

in scan times consistent with using human subjects. To depict

the human cerebral cortex in such detail with MRI can be

considered a threshold that allows cortical areas to be struc-

turally discriminated, layer-dependence of functional activity

to be determined, and much-improved characterization of
axonal pathways to be estimated. Novel methods for analy-

sis are tracking these technical improvements, enabling

new penetrating questions regarding the organization of

brain function.

Layer-specific fMRI offers promise in defining the direc-

tions of causation between brain areas in specific tasks. This

aim requires the use of prior histological knowledge of

neural circuitry in each cortical area involved, and carefully

defined hypotheses and experimental protocols. The optimal

acquisition technique for layer-specific fMRI is not yet fully

established. Histological studies comparing pericyte and

mitochondrial distributions should offer insight regarding

the value of high-resolution mapping of CBV changes.

Ultimately, because feasible fMRI techniques all depend

on the neurovascular response, still deeper understanding

will be needed of the geometry of the cortical and subcortical

microvasculature, the molecular signals relating neural elec-

trical activity to vasodilation and vasoconstriction, the

spatial distribution of pericytes, the details of oxygen extrac-

tion and the integration of the control mechanisms of the

cerebral circulation.
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Neumann J, Turner R, Forstmann BU. 2015 The
subthalamic nucleus during decision-making
with multiple alternatives. Hum. Brain Mapp. 36,
4041 – 4052. (doi:10.1002/hbm.22896)

75. Lu H, Golay X, Pekar JJ, Van Zijl PC. 2003 Functional
magnetic resonance imaging based on changes in
vascular space occupancy. Magn. Reson. Med. 50,
263 – 274. (doi:10.1002/mrm.10519)

76. Huber L, Ivanov D, Krieger SN, Streicher MN,
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