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Abstract
The volume of published research at the levels of systems and cellular neuroscience continues

to increase at an accelerating rate. At the same time, progress in psychiatric medicine has stag-

nated and scientific confidence in cognitive psychology research is under threat due to careless

analysis methods and underpowered experiments. With the advent of ultra-high field MRI,

with submillimeter image voxels, imaging neuroscience holds the potential to bridge the cel-

lular and systems levels. Use of these accurate and precisely localized quantitative measures of

brain activity may go far in providing more secure foundations for psychology, and hence for

more appropriate treatment and management of psychiatric illness. However, fundamental is-

sues regarding the construction of testable mechanistic models using imaging data require

careful consideration. This chapter summarizes the characteristics of acceptable models of

brain function and provides concise descriptions of the relevant types of neuroimaging data

that have recently become available. Approaches to data-driven experiments and analyses

are described that may lead to more realistic conceptions of the competences of neural assem-

blages, as they vary across the brain’s complex neuroanatomy.
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1 INTRODUCTION
The central aim of this chapter is to sketch a methodological proposal for bridging the

gap between cellular and systems levels in human neuroscience, bymaking use of the

technological advances provided by anatomical and functional magnetic resonance

imaging (MRI) at the ultra-high field strength of 7 T, together with rigorous data

analysis, integrated into a reflective conceptual framework combined with detailed

multilevel mechanistic explanations.

Many brain researchers and psychiatrists agree that there is something of a crisis

in brain science, extending from the exploration of neural connectivity to the defi-

nition and treatment of mental illnesses (Canino and Alegria, 2008; Kendler, 2016;

Kendler et al., 2011; Murphy, 2006). While relatively large and increasing research

funding is becoming available across this entire spectrum of research, one notes with

concern the rows over how the European Human Brain Project should be steered and

directed, the distress regarding “voodoo” brain imaging results (Vul et al., 2009)

caused by bad practice in data analysis (resurfacing in a further panic about estimates

of spatial extent; Eklund et al., 2016; Shifferman, 2015), and reactions to the author’s

own critique of neuroimaging analyses which rely on drastic spatial smoothing of

reasonably high-resolution raw data (Turner and Geyer, 2014b). Furthermore,

Uttal (2011), Bennett and Hacker (2003), and Anderson (2014) criticize sharply

the tendency to ascribe very specific roles to specific brain areas.

Some words are needed concerning the focus of this chapter on modeling human

brains, rather than those of other mammalian species. In the first place, the potential

clinical value of vastly improved understanding of brain processes clearly applies

mostly to humans, and experimental results on the brain are obviously easiest to in-

terpret if they derive from the same species. Besides this, the issue of fundamental

importance is the link between function and anatomy. The range of well-

characterized brain tasks that can be reliably performed by conscious humans, often

needing only a few words of instruction, is far larger than that feasible for animal

models, which may have to endure many days of rigorous training that actually

change the brain structures of interest. What the advent of MRI has created in recent

years, empowering a huge expansion of brain research on humans, is the possibility

of comparing specific functions with specific individual brain anatomy.

A number of preliminary issues pertain to the uncritical adoption and employ-

ment of particular conceptual frameworks or theoretical assumptions in the descrip-

tions, interpretations, and explanations of experimental data. Many findings of

experimental psychology have been shown to depend strikingly on the cultural

and indeed population genetic background of the human populations studies

(Chiao and Immordino-Yang, 2013; Henrich et al., 2010), calling into question

the conceptual framework of this discipline (Turner, 2012). At the level of psychi-

atry, the current uncertainty is attested by the far-reaching revision by the American

Psychiatric Association of the categories of mental illness (DSM—Diagnostic and

Statistical Manual of Mental Disorders), and the decision in 2013 of the National
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Institute for Mental Health to refuse to consider grant applications which rely on

DSM categories, instead recognizing value only in applications which deal with Re-

search Domain Criteria rather than patient labels. Concern has grown enormously

regarding the overuse and misuse of psychopharmaceutical drugs, many of which

have much lower effectiveness than initially advertised (Bentall, 2009). Neuroimag-

ing research in psychiatric medicine is currently quite widespread, but it is strikingly

difficult to discern characteristic and reproducible differences in structure or in func-

tional organization between the brain of a normal person and that of someone whose

social behavior is extremely abnormal.

At the root of this unease lies the fundamental problem of relating the mind to the

brain. For more than 2 centuries, many researchers (among them Sigmund Freud)

have been motivated by the hope that an area of discourse could be developed in

which mind and brain are both comfortably included. This would hopefully enable

mechanistic explanatory and predictive modeling of human behavior, and facilitate

the analysis of the complex multilevel causal and constitutional mechanisms—

including molecular, genetic, neural cells, circuits, and systems, endocrine systems,

psychological, ecological, social–cultural—that produce, underlie, and sustain psy-

chiatric syndromes (Kendler et al., 2011). The research field of cognitive neurosci-

ence is focused around this central question, attempting to find brain-based

explanations of human and animal cognitive abilities. At the cellular, subcellular,

and biochemical levels, using animal models, good theories of phenomena such

as experience-driven changes in synaptic efficiency have been established, which

have testable predictions. This would hopefully enable mechanistic predictive

modeling of human behavior, and facilitate the treatment of mental illness as a brain

disease.

It is not yet clear whether relabeling “mind” as “cognition” or treating them as

synonyms, in moving the field of enquiry from psychology to cognitive science,

brings our understanding further forward (Bennett and Hacker, 2003, 2012;

Chemero, 2009). Both terms and their ubiquitous application in psychology and cog-

nitive neuroscience bring with them a variety of conceptual problems. For instance,

if these concepts are to be representative of common sense psychology (or folk psy-

chology) then they need to be exhibited across cultures, and not be restricted to the

atypical populations most often studied, that have been characterized as WEIRD

(Western, educated, industrialized, rich, and democratic, Henrich et al., 2010). Un-

fortunately “mind” and its cognates are only awkwardly translated into many other

languages and cultures, and thus their ontological validity remains in serious doubt

(Turner, 2012).

Additional difficulties arise when the terminology of psychology comes to be

applied to the processes which take place in the brain. Many researchers take the

English word “cognition” to mean the processes internal to the brain that culminate

in the encoding of memories, planning of action, or directly as immediate actions.

This common practice must be regarded as metaphorical, and thus not really scien-

tific (Bennett and Hacker, 2003, 2012). For these reasons, the introductory and

1811 Introduction

Author's personal copy



discussion sections of many publications in cognitive neuroscience can be regarded

as speculative and tendentious.

A somewhat less ambitious area of enquiry deals with the relationship between

cellular and systems neuroscience. Systems neuroscience is concerned with patterns

of activity taking place across entire brains and the peripheral nervous system.While

most of the research in this field considers only macroscale spatial distributions of

brain activity, sporadic efforts are made to model system-level activity in terms of

known properties of the constituent neurons and other relevant types of brain cell,

such as astrocytes. Attaching psychological labels to patterns of activity at this sys-

tem level are seen to be less far-fetched than ascribing memory, volition, intention,

perception, and so forth to component neurons. And systems neuroscience in the hu-

man brain prospers, due to dramatic technological developments made since 1980

largely by physicists.

But the magnitude of the task of modeling the brain should never be underesti-

mated. Lohmann et al. (2013) writes:

Most (if not all) researchers today will agree that the human brain is a complex

adaptive system … (that has) a large number of components … that interact and

adapt or learn.

One of the key features of complexity is thus the sheer size of the system. Small

systems with few constituents can never display a considerable complexity by this

definition…Geometric studies suggest that this property is more dominant in sys-

tems with a large number of constituents… Systems with many constituents have a

higher probability of developing an adaptation process to increase complexity.

Complexity is quite distinct from chaos. Chaos is characterized by high sensitivity

to initial conditions resulting in unpredictable behaviour (not to be confused with

random noise), while the hallmark of complexity is emerging behaviour and a ten-

dency toward self-organization. Complex systems exhibit an interplay of chaos

and complexity, whereas fully chaotic systems are unpredictable in their entire

phase space. Very small systems can be fully chaotic (e.g., a double pendulum),

while complexity requires positive feedback mechanisms as well as a large num-

ber of nonlinearly interacting agents. If our brains were merely chaotic, but not

complex, we would certainly not be able to survive.

Another aspect to be considered is that the complex system inside our brain is not

static, but changes over time and is thus termed an adaptive system. We need to

distinguish adaptability due to the fast dynamics of activation patterns versus the

slower changes in synaptic coupling strength. Both aspects come into play and

leave traces in the data that we measure.
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In the early 1980s, the leading noninvasive method for studying the localization of

brain function was positron emission tomography (reviewed in Turner and Jones,

2003). Most studies involved averaging results obtained using a particular task

paradigm across several human subjects. In order to match corresponding cortical

areas across spatially normalized brains, a smoothing kernel of 10–15 mm was nor-

mally applied to the image data before further statistical analysis. In any case, the

intrinsic resolution of PET was only about 5 mm. In order to identify where acti-

vation occurred in the averaged brain, statistical maps were generated which could

then be thresholded to reveal compact patches of increased blood flow (Friston

et al., 1991).

Compared with earlier approaches to functional brain mapping, the results from

this strategy were deemed highly satisfactory, and few researchers worried whether

the resultant large brightly colored blobs supposedly showing areas of significant

activation, superimposed on nonquantitative T1-weighted structural MR images,

gave an adequate picture of the brain areas involved in particular tasks. Instead, most

brain scientists were happy that this analysis appeared to show that brain activity was

strongly segregated into specialized regions, as opposed to the hitherto popular con-

nectionist view of Lashley (1929) and others (see below). When blood oxygenation

level-dependent (BOLD) contrast fMRI was discovered by Ogawa et al. (1990),

Turner et al. (1991), and Kwong et al. (1992), almost all users of this higher resolu-

tion technique processed their much more abundant data to generate similar highly

smoothed maps.

It was inevitable that such maps would foster the illusion of cortical modules.

Even though Fodor, the most influential promulgator of the idea of cognitive mod-

ularity (Fodor, 1983) himself repudiated the idea that cognitive modules would be

necessarily manifested as compact spatial groupings of neurons, it became highly

popular, with thousands of research studies claiming that this or that psychological

task was actually performed by a specific cortical area. The raw functional MRI data

were rarely shown in the research publications of cognitive psychology. Instead, un-

necessary spatial smoothing of the functional images was commonly performed be-

fore further processing, which simplified the statistical analysis but essentially ruled

out the possibility of associating brain functional activity with specific neural sub-

strates. The misleading pictures of activated brains thus derived also fostered the er-

roneous notion that modeling functional activity as graphs with relatively few nodes

and edges, for instance dynamic causal modeling (Friston et al., 2003) could be use-

ful in explaining brain function (Lohmann et al., 2012).

We should distinguish between distinct kinds of cognitive modularity from dis-

tinct kinds of neural modularity and recognize the real challenges of bringing these

two together.

A frequently made assumption is that the mind can be subdivided into modules or

parts whose activity can then be studied with fMRI. If this assumption is false, then

even if the brain’s architecture is modular, we would never be able to map mind

modules onto brain structures, because a unified mind has no components to
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speak of. Even if true, the challenge remains in coming up with the correct recur-

sive decompositions—in each of which any given cognitive capacity, however ab-

stract, is divided into increasingly smaller functional units that are localized to

specific brain parts, which in turn can be detected and studied with fMRI. This

is not a neuroimaging problem but a cognitive one. Hierarchical decompositions

are clearly possible within different sensory modalities and motor systems. Their

mapping, which reflects the brain’s functional organization, is evidently possible

and certainly meaningful beyond any reasonable doubt.

Logothetis (2008)

Despite the potentially excellent spatial resolution of fMRI, very little research has

been done to discover the data-driven natural scales of granularity in human brain.

Now, using ultra-high field MRI at 7 T, the spatial resolution can be as high as

0.5 mm for functional scanning, and 350 mm for structural images. Such structural

images can show layers of myelinated axons within the cerebral cortex, enabling

a direct evaluation of the relationship between structure and function. Using the ob-

servable myeloarchitecture as a guide, in principle one can deduce the cytoarchitec-

ture (Nieuwenhuys, 2013; Van Essen and Glasser, 2014), and thus address the

relationship between local neuronal circuits and specific cortical competences. Fur-

thermore, novel methods for assessing cerebral blood volume, rather than changes in

blood oxygenation, promise to provide a reliable quantitative marker of layer-

dependent activation.

With such tools at one’s disposal, the way is open toward greatly improved

models of human brain function, which may show promise in bridging the gap be-

tween systems neuroscience—the province of cognitive neuropsychology—and cel-

lular neuroscience. Novel concepts and techniques are becoming available that can

provide insight at this level of explanation: the study of neural reuse at a microscopic

scale (Anderson, 2014) using repetition priming experimental designs; detailed

voxel encoding (Stansbury et al., 2013) using very large stimuli sets; and data-driven

modeling of phenomenological characterizations of brain function (Gallagher et al.,

2013) using ecologically valid experimental strategies.

In order to justify the approach just outlined, this chapter describes a well-

established perspective on explanation and modeling in systems-level neuroscience

and includes the addressing of another important issue—the level of detail needed to

provide adequate naturalistic modeling.

2 MODELING THE BRAIN
2.1 MECHANISTIC MODELS
The brains of mammals contain some 108–1011 neurons, organized into well-defined
groupings, and each neuron possesses up to thousands of synaptic connections with

other neurons. Statistically, despite the huge number of neurons, a signal only needs

to cross about five synapses to travel from any given neuron to any other. Besides this
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structural complexity, which is continually modified as development and experience

drive axonal myelination, changes in the strength of synapses, the formation of new

synapses, and the loss of existing synapses, the mode of transmission of signals be-

tween neurons can vary greatly. In addition to the principal neurotransmitters, excit-

atory glutamate, and inhibitory gamma-aminobutyric acid (GABA), there are 4

major modulatory neurotransmitters, and up to 20 less-common neurotransmitters

relating to appetite and other regulatory functions. Nitric oxide, hormones, and sev-

eral neuropeptides (such as oxytocin) also play important modulatory roles in brain

activity, adjusting the “set points” of activity locally and even globally. The high

density and interconnectedness of neurons found in the brain are also found in the

spinal cord. In the form of peripheral nerves, neurons eventually terminate at muscle

fibers and sensory receptor cells. Surrounding and supporting the neurons there is an

interconnected network of a similar number of astrocytes, whose electrochemical

connections are typically of shorter range but are known to have a crucial role in

neuronal signal transmission.

In the face of this amazing complexity, how can human scientists possibly make

sense of brain function? Scientific understanding only increases when simple models

can be devised to describe quantitatively the operations of a complex system, so that

given appropriate boundary and initial conditions, the future behavior of the system

can be predicted with a nontrivial degree of accuracy. A contemporary “new

mechanistic” approach to biology, neuroscience, and psychology is led by Carl

Craver, among other exponents well versed in the philosophy of science (Bechtel,

2006, 2008; Bechtel and Richardson, 2010; Cartwright, 1999; Craver and Darden,

2013; Piccinini and Craver, 2011). Craver (2007) provides a robust account of

well-accepted strategies for developing satisfactory mechanistic models in neurosci-

ence, based on a broad reading of influential research publications and his own ex-

pertize in the philosophy of science—amounting to something resembling an

ethnology of brain modeling cultures.

Mechanisms are entities and activities organized such that they exhibit the expla-

nandum phenomenon.

Craver (2007, p. 6)

The phenomenon to be explained is some behavior or capacity such as a mental ill-

ness, episodic memory, spatial navigation, generation of spatial maps in the hippo-

campus, circadian rhythms, neurotransmitter release, action potentials, activation of

NMDA receptors, and so on. Mechanisms produce, underlie, or maintain

phenomenon.

Mechanistic explanations are constitutive or componential explanations: they ex-

plain the behaviour of the mechanism as a whole in terms of the organized activ-

ities of its components.

Craver (2007, p. 128)

Mechanisms are constituted by the spatial, temporal, active organization of their

component entities, and activities. The component parts of a mechanisms comprise
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various “entities (ion channels, active zones, a host of intracellular molecules, ves-

icles containing neurotransmitters, fusion pores, and neural membranes) and their

various activities (opening, clamping, diffusing, docking, fusing, incorporating,

phosphorylating, and priming)” (Craver, 2007, p. 5).

Most credible biological mechanistic explanations, especially in neuroscience,

are not centrally concerned with the explanatory reduction of the activities of higher

levels to those of the lower, but aim instead to “bridge multiple levels and that require

the disciplinary expertise of multiple fields” (Craver, 2007, p. 265).

Appeal to mechanisms is not necessarily reductionistic. Mechanisms are often de-

scribed as multi-level, with activities at different levels being equally essential to

how a mechanism works. Mechanistic explanations might look, up, down, or

around depending on the choice of an explanandum and the presuppositions of

the explanatory context.

Bechtel (2009)

Mechanists can be reductionists or anti-reductionists. That said, many mechanists

opt for some form of explanatory anti-reductionism, emphasizing the importance

of multilevel and upward-looking explanations, without rejecting the central ideas

that motivate a broadly physicalist world-picture.

Craver and Darden (2013)

Craver uses the integrated interlevel experiments on the mechanisms of spatial mem-

ory, among many others, to illustrate the way that “the phenomena at each of these

levels—NMDA receptor function, LTP [long term potentiation], spatial map forma-

tion, and spatial memory—is constitutively relevant to the next” (Craver, 2007,

p. 265). By experimentally knocking out causal interactions of component entities

at a lower level, activities at a higher level can be inhibited or undermined that

are enabled constitutionally by the organized activities of the mechanism’s compo-

nents. Crucially, in most cases:

the operations within a mechanism are different from the phenomenon produced

by the mechanism. Within a neuron, for example, neurotransmitters perform such

operations as diffusing across a synapse and binding to a receptor; but the neuron

itself generates action potentials. The point of organizing component parts and

operations into a mechanism is to accomplish something that cannot be performed

by the individual components. Hence, assuming a homunculus with the same ca-

pacities as the agent in which it is posited to reside clearly produces no explan-

atory gain. The recognition that it is problematic to assume that operations within

a mechanism perform the same type of operations as the mechanism itself may be

a major reason many find problematic Fodor’s (1975) proposal of a language of

thought to explain language and thought.

Bechtel (2009)
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New mechanists provide many insights into the questions, constraints, and strategies

that guide scientists searching for mechanisms. They distinguish the search for bio-

logical mechanisms into four stages: characterizing the phenomenon, constructing a

mechanistic schema, evaluation, and revision.

Biologists use mechanism schemas to describe, explain, explore, organize, pre-

dict, and control phenomena.

Craver and Darden (2013, p. 91)

The aim of scientific investigation is to transform a black box sketch of somemech-

anism and its organized components into a grey box sketch that can eventually

become a transparent glass box schema that completely or at least adequately

represents the ways in which all the levels of a mechanism are constituted from

the interactions of their components. These boxes are gradually filled in by inves-

tigating bit-by-bit how all the components in the mechanisms work and function

together often through a decomposition of a mechanism into its lower level com-

ponents. Understanding the interaction of the components of a mechanism often

involves moving from how-possible models to how-actual models of the organized

components of a mechanism. We begin constructing our how-possible model of a

mechanism by considering all of its possible constraints; the components of mech-

anisms have a variety of constraints such as their locations, structures, abilities,

activities, functions, what they produce, underlie, maintain, and their overall or-

ganization. What does this neural assembly do? Where is it located? What can the

cytoarchitecture tell us about the abilities of these neurons?What features of these

components make a difference to the phenomenon of interest? How-plausible

models are distinguished from how-possible models by evaluating the degree

to which some models can accommodate more of the known constraints of the

mechanism that come to light through further investigation.

Craver and Darden (2013)

The central criterion of adequacy for a mechanistic explanation is that it should

account for the multiple features of the phenomenon, including its precipitating

conditions, manifestations, inhibiting conditions, modulating conditions, and

nonstandard conditions.… The model of a mechanism does not describe capac-

ities of the mechanism as a whole; it describes the activities of the mechanism’s

components. How-possibly models can be composed of fictional components, but

how-actually models describe real components that have multiple properties, that

are detectable with multiple techniques, that are utilizable for the purposes of in-

tervention, and that are physiologically relevant. The model of the mechanism

also describes the causal relations (activities) that compose the mechanism.

Craver (2007, p. 139)

1872 Modeling the brain

Author's personal copy



It is thus vitally important for the success of mechanistic models of neurons, neural

assembles, and neural systems that they should be consistent with what we know

these neurons can actually do Craver’s detailed account of multilevel mechanistic

explanations, interfield integration, the process of discovering, evaluating, and revis-

ing how-actually models from how-possible models, and a surfeit of illustrations

from neuroscience, merits a close consideration. While Craver’s examples are gen-

erally drawn from experimental research at the scale of neurons or small assemblages

of neurons, this discussion will apply the principles that Craver enunciates to

systems-level attempts to formulate tractable models, and thus provide criteria for

the likely success of such modeling. The appropriateness of Craver’s characteriza-

tion of successful mechanistic explanation is borne out in numerous examples from

the literature of cellular-level neuroscience, which do not need to be rehearsed here.

What are scarcer, however, are successful examples of mechanistic explanation at

the level of cognitive neuroscience. Two severe difficulties are at once encountered.

The first difficulty arises in the task of defining components (in Craver’s sense as

organized entities and activities: see “Field Guide to Levels” in Craver, 2007,

chap. 5). Models constructed at the scale of the entire brain that specify individual

neurons as components are obviously unusable. While much is known regarding the

typical characteristics of typical neurons, no method has yet been established for

mapping every neuron in an actual mammalian brain, together with its activity over

time. Even if such data could be obtained, the computational power available in the

most powerful computers yet available would be wholly inadequate to the task of

making testable predictions of the future states of such a model system.

In the physics of matter, models are successful when they employ principles of

statistical mechanics to characterize the collective behavior of very large numbers of

microcomponents that can be considered as identical, very often describing such be-

havior as emergent properties such as pressure, temperature, and so forth. But neu-

rons cannot be regarded as identical in their properties. Even the 305 neurons of the

nematode Caenorhabditis elegans are separately identifiable, and each performs a

separate function, in combination with the activities of many of the other neurons.

Ablation of even one of these neurons can have striking specific effects on the an-

imal’s behavioral repertoire.

Some authors have attempted to explain mammalian brain function using the pre-

mise of “neural mass modeling.” Here the activity of a group of neurons is supposed

to be approximated by their average properties and interactions, located at a point in

the brain, together with postulated interactions with a small number of other groups

of neurons located at other points in the brain. However, this model entails the un-

likely presupposition that neurons in a mammalian brain are far less specific and dif-

ferentiated than those comprising the nervous system of a nematode. A further

difficulty arises in the way that this approach has been applied, which due to drastic

spatial smoothing typically takes little account of neuroanatomical details, indeed

conflating gray matter and white matter, let alone grouping together separate brain

areas on either side of sulci. Classifying brain tissue on the basis of the cognitive or

perceptual tasks supported (e.g., Haxby et al., 2014) can provide some insight into
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the basic competences of each neural assembly, but far more creative work is yet

needed to find realistic and useful labels for each assembly (see below).

The question then arises, is there any other way of grouping neurons, so that they

form physiologically relevant components of a model that is computationally trac-

table? Craver (2007) describes levels of mechanisms as follows:

Organization is the inter-level relation between a mechanism as a whole and its

components. Lower-level components are made up into higher-level components

by organizing them spatially, temporally and actively into something greater than

a mere sum of these parts.

Thus, one might hope to progress downward through levels by analyzing the struc-

ture of the top-level components as assemblies of already well-characterized parts,

such that the ascribed properties of the top-level components are consistent with the

arrangement, properties, and activities of the elements of these assemblies. In the

context of systems neuroscience, the first task is to define the top-level components.

Several possibilities offer themselves. One might take brain regions, defined as the

collection of identifiable cortical areas (Brodmann, 1909; Glasser et al., 2016;

Turner, 2016; Vogt and Vogt, 1919) together with deep brain nuclei (Keuken

et al., 2014). This is discussed further in a later section of this chapter.

2.2 DESCRIPTION AND ATTRIBUTION OF FUNCTION
The second major difficulty lies in defining the phenomena to be explained by the

model—the physiological activities of the brain. At the cognitive level, one is gen-

erally dealing with the constructs formulated over the last 150 years within Western

psychology. The ontological validity of many such constructs is seldom seriously

investigated (see Turner, 2012) and their cross-cultural robustness is far from certain.

Much work has been invested into “how-possibly” models, using boxes representing

brain modules that are labeled with terms drawn from Western psychology, which

interact with each other and the outside world along posited pathways and causal

directions. However, few efforts have been made to justify the plausibility of each

box by showing how the combined activity of the neurons within each box could

collectively demonstrate the assumed behavior. It can also be strongly argued (for

instance by Anderson, 2014, p. 104) that it is not rare for local neural assemblies

to be “multifunctional,” taking part in a range of brain systems that each accomplish

different tasks. Thus the spatial compactness of an apparent cognitive representation

cannot be taken as a criterion of the ontological stability of that cognitive faculty.

Poldrack and Yarkoni (2016) have called for a far more empirical approach to the

classification of cognition, via a “Cognitive Atlas” that is intended to capture two

primary forms of knowledge:

First, it aims to define psychological constructs in order to provide consensus def-

initions that can serve as the basis for accurate scientific communication and dis-

cussion. A fundamental distinction made within the Cognitive Atlas is between
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mental concepts, which refer to putative but unobservable psychological pro-

cesses or structures, and mental tasks, which are the objective operations used

to measure those putative constructs. … Second, the project aims to establish a

knowledge base of the relations within and between mental tasks and mental con-

cepts.…Within the Cognitive Atlas, mental tasks are described in terms of three

primary features: (a) conditions (which specify different conditions of measure-

ment), (b) contrasts (which specify either comparisons between conditions or re-

lationships with continuous variables), and (c) indicators (which specify variables

that are measured within the task; these could reflect behavioral, neural, or other

physiological measurements). In order to capture the relations between tasks and

concepts, a novel ontological relationship (measured-by) was defined that de-

notes the fact that a specific concept is measured by a specific task. Importantly,

concepts are not related to the overall representation of a task but rather to spe-

cific contrasts.

While this approach is well intentioned, it may perpetuate a crypto-Cartesian dualism

between mind and brain. Furthermore, it makes no effort to deal with the ethnocen-

trism of Western psychology, mentioned above and brilliantly exposed by Henrich

et al. (2010) “The weirdest people in the world?,” because its main purpose is to find

more empirical definitions of psychological concepts that are already part of a re-

ceived lexicon, which may have very little relevance in widely different human cul-

tural settings.

A potentially more fruitful approach to the categorization of cognition and its role

in mechanistic brain modeling can be found in work by Maley and Piccinini (2017)

(henceforth MP), where they emphasize the concept of “teleological function” in re-

gard to the goals of organisms:

The paradigmatic goals of organisms are survival and inclusive fitness, although

organisms may have additional goals.

What a trait or part of an organism is for, as opposed to the others things it does, is

its teleological function. When a trait fails to perform its teleological function at

the appropriate rate in an appropriate situation, it malfunctions.

A teleological function in an organism is a stable contribution by a trait (or com-

ponent, activity, property) of organisms belonging to a biological population to an

objective goal of those organisms.

Construed generally, a trait’s function (and sometimes the successful perfor-

mance of that function) depends on some combination of the organism and its en-

vironment … the truthmakers for attributions of functions to an organism’s trait

are facts about the organism and its environment.
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These authors go on to address the implications of this formalism in regard to cog-

nition and neuroscience:

When psychologists posit the performance of cognitive functions within organ-

isms, they offer a sketch of a mechanism. Such a sketch can be completed at that

level by specifying which structures perform those functions. That level of expla-

nation can then be combined with other levels by showing how each structure per-

form its functions in virtue of its lower level organization as well as how each

structure fits within a larger containing mechanism. Going down one level in-

volves adding details about a given structure and how it performs its functions;

going up one level involves abstracting away from lower level details and fitting

a structure into its mechanistic context. When all relevant levels and their mutual

relations are understood, the upshot is a unified, integrated explanation of

cognition.

In attempting to formulate a vocabulary of teleological functions, it is important to

recognize that the term “cognition” is inherently vague. As was noted, many re-

searchers take this word to mean the processes internal to a brain that culminate

in the encoding of memories, planning of action, or directly as immediate actions.

However, as far as the electrochemical activity of individual neurons is concerned,

the terms “cognition,” “action,” “perception,” “volition,” and “emotion” have no dis-

tinctive meanings. It is likely that there are no specific markers, in regard to spike

trains or patterns of membrane polarization, which discriminate the type of cognitive

activity taking place in any particular neuronal assembly. In what follows, therefore,

all of these mental activities will be considered collectively.

In theMP framework just outlined, the challenge for brain modeling is to robustly

identify teleological functions at the level of the organism (the human person) which

can then be mechanistically described at the next lower level in terms of measurable

interactions between well-defined components (in Craver’s sense) of the organism.

Traditional psychology offers a motley collection of candidates for such func-

tions, some more firmly rooted in reproducible and cross-culturally valid experimen-

tal methods than others. A preferable alternative would be to formulate a cognitive

ontology from the set of brain tasks that can be inferred from consideration of task-

specific brain networks. To ensure that a wide range of human behavior could be

mechanistically explained using such a set of functions, a very large number of con-

trasting tasks would need to be explored, while recognizing the computational dif-

ficulties arising from the frequent overlaps (Anderson, 2014) of such networks. It

must be considered an empirical question whether the resultant enormous set of com-

ponents can possibly form a tractable basis for mechanistic explanation. If there is

substantial clustering of networks, such that they can be grouped into a relatively

small number of types, the types themselves might be usable. Evidence that this

might be the case has been provided by the study of so-called “resting-state

networks” (Beckmann et al., 2005; Biswal et al., 1995), observable using functional

MRI with subjects instructed not to perform any particular task. Independent com-

ponent analysis (ICA) has found that no more than about 100 temporally independent
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spatial networks capture most of the variance in the fMRI time course data. These

networks can be roughly associated with brain areas shown using PET or fMRI to

support action competences, such as visual perception, limb movement, and auditory

perception (Smith et al., 2009). Whether any of these definable and relatively repro-

ducible networks can be mapped onto more psychological concepts such as inten-

tion, volition, agency, attention, and emotional valence remains unclear. This

approach leads straightforwardly toward the concept of “representational models”

(Kriegeskorte and Diedrichsen, 2016) which will be discussed more fully below.

Recently, the concept of “affordance,” introduced by Gibson (1966, 1979) has

been considered in regard to itemizing the brain’s competences. Anderson (2014)

summarizes this approach: “the brain should be understood as an action-oriented

system” and “perception should be thought of as the assessment of the values of sa-

lient organism-environment relationships and the detection of opportunities for

changing those values through action.”

This conceptualization converges with that provided by the veteran visual neu-

roscientist Purves et al. (2015), who argues that “the solution (to understand visual

perception) depends on: (1) rejecting the assumption that the goal of vision is to re-

cover, however imperfectly, properties of the world; and (2) replacing it with a par-

adigm in which perceptions reflect biological utility based on past experience rather

than objective features of the environment.” If the brain can be regarded as the organ

that prepares the organism for what happens next, par excellence, this formulation

appears to make a great deal of sense. The question then becomes one of assigning

identifiable competences to brain areas or networks that work together in performing

this fundamental task: in short, discovering neural embodiments of learned affor-

dances. We shall return to this topic in a later section, dealing with the themes of

population receptive fields, voxel encoding, and deep learning.

2.3 PREDICTION AND PREDICTIVE CODING
Whatever choices are made regarding a useful listing of teleological functions, one

guiding principle is relevant. In addition to receiving input from neural sensors and

controlling motor outputs, any assemblage of neurons complex enough to be de-

scribed as a brain must have the capability of predicting future events, and planning

responses accordingly. It is obvious that such a competence adds greatly to the sur-

vival potential of the organism, and it can easily be argued that the capacity of or-

ganisms to remember previous experience (usually by virtue of having a brain) is

contingent on the biological need to predict what may happen next. For instance,

identification of objects of sensory experience can be performed with high efficiency

when neural assemblies can rapidly compare the afferent signals arriving from sen-

sory organs (such as the eye) with a restricted set of possibilities stored in memory—

Bayesian priors—and report accordingly to other brain areas even when only a small

number of discriminating signals has been received. This approach, first hinted at by

Gregory (1966) has been formalized under the description of “predictive coding”

(Rao and Ballard, 1999), and it has been embodied in neural network models, such
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as recurrent neural networks (Bastos et al., 2012; Bitzer and Kiebel, 2012). Brain

activity that can experimentally be demonstrated to provide predictive coding can

clearly be considered as teleological, in the MP sense of the term. From this perspec-

tive, elaborating a list of domains of experience in which predictive coding can be

observed to operate—perception and action-related—might greatly assist the devel-

opment of plausible brain models.

In this context, the concept of prediction error, as a brain signal of importance to

the organism, has been explored in some depth. Friston (2010) has formulated a

global model of the relationship of a brain to its environment, which gives a central

place to this concept, which is equivalent to surprise, using the statistical mechanical

metaphor of “free energy.” He claims that many measurable characteristics of brain

function can be viewed as a process of minimization of free energy. Whether this

formulation is essentially tautologous, vacuous, or can provide genuinely mechanis-

tic modeling is not yet clear, largely because Friston’s approach to systems neuro-

science neglects detailed neuroanatomy, and thus fails to relate measurable brain

activity to its observable neural substrate.

2.4 CONNECTIONISM AND SPATIAL MODULARITY
The intense neural connectivity mentioned above encouraged many researchers

(Hinton et al., 1986; Lashley, 1929) to reject the idea of specialized brain regions

for specific tasks, arguing instead that “each entity is represented by a pattern of ac-

tivity distributed over many computing elements, and each computing element is in-

volved in representing many different entities” (Hinton et al., 1986, p. 77). This

activity, parallel distributed processing, leads to a theoretical perspective known

as connectionism, in which it makes little sense to divide the brain into specialized

functional regions. However, while a brain based on such principles can be imagined

andmodeled, there is enormous empirical evidence that many brain areas do not have

the equipotentiality called for by strict connectionism, instead showing quite distinct

preferences for specific types of task or stimulus. Much of this evidence comes from

invasive experiments on a wide range of animals, where highly localized lesions of

gray matter cause highly specific functional deficits. Much has also been inferred

from comparable lesion studies in humans, where brain damage has been measured

using structural imaging techniques such as MRI, and compared directly with spe-

cific task performance (Bates et al., 2003).

Moreover, there are now thousands of studies using the methods of BOLD con-

trast functional MRI that show striking spatial variations in brain activity for a great

range of tasks and stimulus presentations. Using analysis techniques that have be-

come standardized and appropriate thresholding of the resulting t-maps, cognitive

subtraction studies often show relatively small numbers of activated cortical or sub-

cortical areas, with well-defined boundaries. Such findings appeared to be entirely

incompatible with connectionism, until the results of recent careful studies were

reported. These studies attacked the problem of the relatively low signal to noise

available in functional MRI, by the straightforward means of repeating the
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experiment many times with the same volunteer subjects. The researchers avoided

the use of the more popular analysis methods, concatenating about 10 h-worth of

single-subject functional MRI data obtained across many imaging sessions

(Gonzalez-Castillo et al., 2015). Strikingly, they found that a significant time-locked

response to the quite simple task paradigm performed by the subject could be

detected in most of the voxels in the brain. Thus, the tidy localization of function

found in studies using poorer data may sometimes be explained by the choice of anal-

ysis method. Absence of evidence is not evidence of absence.

Nonetheless, fMRI researchers very often observe dramatic spatial variations in

the amplitude of functional activity, even amounting to reversals of sign, for instance

in center-surround suppression in the visual cortex (Shmuel et al., 2002). Boundaries

of functionally discriminable brain areas can be experimentally defined and are nor-

mally conserved across a range of relevant stimuli. Such boundaries can even be pre-

cisely delineated in task-absent BOLD functional MRI studies (see Glasser et al.,

2016). Clearly an extreme connectionist view in which the function of a given area

of cortex is entirely dependent on the behavioral task has no experimental justifica-

tion. Neuroanatomical constraints play a crucial role in the range of competences that

can be deployed by local neural assemblies. How important more subtle time-locked

variations in brain activity might be in explaining task performance still remains to

be explored. To a first approximation, statistically thresholded data using relatively

short periods of data acquisition may be enough to provide robust brain modeling—

but this is unlikely to be achieved unless the level of spatial granularity of the data is

appropriate.

2.5 ISSUES OF GRANULARITY: LEVEL OF EXPLANATION AND
CONSISTENCY
The term “granularity” is used in physics to refer to the level of detail at which a

phenomenon is described and analyzed (Gell-Mann, 1995). The natural granularity,

or graininess, of the known universe is defined by the size of Planck’s constant h, the
minimum quantity of action that may be exerted by anything on any other thing. Ex-

planations and models at this level of granularity, when they can be formulated, are

apparently the best that one can hope to achieve. However, due to the physical and

chemical properties of the world we live in at the surface temperatures of our planet,

we have some natural kinds, such as the physical elements, with their chemical in-

teractions, and consequently objects exist. Objects have size and mass, and often

well-defined boundary surfaces.

This has meant that many satisfactory explanations have been established, deal-

ing with the behavior of objects and physical fields, at a much coarser level of gran-

ularity than Planck’s constant. Sciences such as geology and neuroanatomy rely on

the possibility of unambiguous and reliable identification of durable components of

systems whose behavior can be predicted using mechanistic modeling and measured

using reproducible equipment.
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As regards brain science at the mesoscopic scale, granularity becomes a crucial

question. Here the concept of level needs to be discussed. Craver (2007, p. 189) ar-

gues strongly from his ethnographic evidence that the components of a successfully

conceived mechanism can be analyzed into lower-level components, which are

“organized together” to form the higher-level components. He asserts that this anal-

ysis need not be on the basis of object size, but on the basis of behaving components

that are unified by their organization in an activity, which may not indeed correspond

to individually definable objects. The levels at which these components are local,

defined only within a given compositional hierarchy.

Such a broad characterization of levels of mechanism offers considerable scope

for theorists of brain function. However, certain restrictions must still apply. Craver

(2007, p. 131) states that the parts of a successful mechanism “have a stable cluster of

properties, they are robust, they can be used for intervention, and they are physio-

logically plausible in a given pragmatic context.” This last characteristic can be

restated as a condition of consistency or appropriateness: the component must be

comprised of known elements at a lower level that plausibly can be organized to-

gether to form the higher level component, and at this level causes can be proposed

that plausibly can have effects that are measurable at the higher level. Considering

the brain as a system, it would seem appropriate to define its elements as those parts

that have an unambiguous neuroanatomical identity.

Before providing a list of such components that fulfill the requirements for mech-

anistic modeling of brain function at the systems level, it is worth briefly reviewing

the types of object that make up brains.

3 NEUROANATOMY
3.1 THE NEURON DOCTRINE OF CAJAL
The neuron doctrine is the universally accepted concept that the nervous system is

made up of discrete individual cells, the neurons, supported by astrocytes and by

other glial cells. This discovery was due to the brilliant neuroanatomical work of

Santiago Ramón y Cajal (Finger, 2000). By comparison with all other types of cell,

what is remarkable about neurons is their ability to communicate with each other

over long distances (compared with the size of their cell bodies) via the highly ex-

tended neurites, or neural processes, which carry pulses of electrical voltage (action

potentials). These electrical pulses generally cause changes in the neurons that re-

ceive them, and can thus be formally regarded as signals. There are two types of neur-

ites, dendrites and axons, where dendrites mainly convey action potentials toward the

parent cell body (or “soma”) and axons conveying action potentials away from the

soma toward other neurons, at which they terminate, forming synaptic junctions with

dendrites belonging to the target neurons.

Neuroanatomists have defined about 100 types of neuron that can be found in the

human brain, two important primary classes being excitatory pyramidal cells and
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inhibitory interneurons. It has long been known (Brodmann, 1909) that the cerebral

cortex shows macroscopic areas with fairly uniform organization of neurons, typi-

cally into six layers within the 2–4-mm thick cortex. The local pattern of neuronal

organization is described as “cytoarchitecture.” More than 45 such distinguishable

areas have been identified in cadaver brain tissue.

3.2 MYELIN
It is a feature of many axons that over the course of development they become sur-

rounded with a multilayer sheath of phospholipid membrane known as myelin. This

sheath dramatically increases the velocity of action potentials, confers greater phys-

ical strength to the axon, reduces its energy requirements, and provides electrical in-

sulation against cross-talk with other neurons. In the gray matter of the brain axonal

myelination also inhibits the formation of new synapses. The formation of myelin is

often driven by the organism’s experience, whereby the passage of action potentials

along unmyelinated axons stimulates neighboring specialized glial cells to begin the

process of myelination.

The axonal pathways within the white matter of the brain are normally heavily

myelinated by the time a human is about 3 years old, which gives rise to the whitish

color of this tissue. Within the cortex, different cortical areas show layer-specific

variations in the degree to which axons are myelinated, some prefrontal areas being

very lightly myelinated even in adulthood, while primary sensory and motor areas

are generally very heavily myelinated. The pattern of myelination is termed the mye-

loarchitecture (Flechsig, 1920; Vogt and Vogt, 1919). Typically, myelinated fibers

within the cortex are either radial to the cortical surface or run tangentially in well-

defined layers—the so-called “bands of Baillarger.” Recently, Micheva et al. (2016)

have discovered that a majority of myelinated cortical axons connect to inhibitory

synapses.

It is widely believed (Nieuwenhuys, 2013) that the boundaries of distinguishable

cytoarchitectural areas correspond closely with those of myeloarchitectural areas.

Nieuwenhuys et al. (2015) have recently transferred the areas discovered by the Vogt

laboratory (1919) onto a standard 3D reference brain in digital format, in concert

with the ongoing massive research effort to map human cortical areas in vivo using

their MRI-visible myeloarchitecture (Bazin et al., 2014; Dinse et al., 2015; Geyer

et al., 2011; Sereno and Huang, 2014; Tardif et al., 2015; Turner and Geyer,

2014a,b, Van Essen and Glasser, 2014; Waehnert et al., 2016). Interestingly, about

190 myeloarchitecturally distinct areas were already reported by Vogt and Vogt, a

number which closely corresponds to that recently published by Glasser et al.

(2016) using a range of incommensurable imaging techniques. Glasser et al. have

claimed that their discovery of additional areas, beyond 47 areas mapped by Brod-

mann, is novel, but they fail even to refer to the work of Oskar and Cecile Vogt.

While the cerebral cortex everywhere has the same general appearance and re-

quires detailed examination to reveal distinct areas, this is not always the case for

the subcortex—those areas of gray matter deep in the human brain which usually
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have homologous counterparts in other mammalian species. Here the hippocampus,

the amygdala, the basal ganglia, and even the tiny habenula can be easily distin-

guished from neighboring tissue. Brain nuclei in the pons and medulla can also

be easily identified in cadaver brain. Other regions such as the thalamus and hypo-

thalamus are somewhat less easily discriminated, but histology has shown these to be

composed of many subnuclei. Typically, the mesoscale parts of the subcortex have

spatial dimensions of millimeters to centimeters. A taxonomy of these structures

(Alkemade et al., 2013) gives a total of 455 named nuclei, of which perhaps 10%

may be identifiable using current MRI techniques.

3.3 COMPACTNESS OF BRAIN AREAS
Largely due to how they develop, according to the fundamental biophysical rules of

brain morphogenesis (Nieuwenhuys and Puelles, 2016), many anatomical compo-

nents of the brain have identifiable boundaries. Although these can vary widely in

shape—the long corticospinal tract of efferent and afferent neurons stretches tens

of centimeters between the somatomotor cortex and neurons in the spinal cord, while

the brainstem’s red nucleus is an almost spherical ball about 5 mm across—neurons

with similar functions appear to be often grouped together. Within areas of relatively

uniform neural anatomy, maps have been discovered (Sereno et al., 2013)—in visual

cortex, spatial maps of the visual scene; in auditory cortex, maps of sound frequency;

in motor and somatosensory cortices and in cerebellum, spatial maps of the body; and

in the caudate nucleus, maps of the level of abstraction (Mestres-Miss�e et al., 2012).
The existence of such maps within identifiable areas may be regarded as a useful clue

in the task of listing teleological functions, and thus brain model building, and the

fact that these maps themselves have boundaries provides reassurance that the brain

areas where they are located can be used as model components. For instance, excel-

lent congruence has been found between the borders of primary visual cortex V1 as

defined by structural MRI visualization of its unique anatomy (see below) and the

spatial map provided by the functional MRI signal in the occipital cortex excited

by sweeping a visual stimulus across the visual field (Bridge et al., 2005;

Sanchez-Panchuelo et al., 2012).

3.4 NETWORKS AND CONNECTIVITY
3.4.1 Intracortical networks
Characteristically, brain areas contain populations of excitatory pyramidal cells and

various types of interneurons, which may have inhibitory or excitatory synapses onto

the pyramidal cells. This cortical circuitry is now the subject of intense study at nano-

meter resolution, using a range of techniques (Denk et al., 2012; Markram et al.,

2015). Networks are modified as the result of experience (Chandrasekaran et al.,

2015) as dendrites sprout and shrink, and new synaptic connections are made and

lost. But the basic architecture is laid down during development, before and after

birth. Extensive research with laboratory animals has revealed area-specific patterns
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of connection, in which neurons in layer IV very often receive projections from tha-

lamic nuclei that transmit sensory signals from the peripheral nervous system, and

neurons in other layers receive and send signals to other cortical areas or subcortical

nuclei. As will be discussed further on, if brain activity could be measured at the rel-

evant spatial scale, such circuit diagram information may be highly valuable for

building mesoscale mechanistic models.

3.4.2 Systems level
As already remarked, long-range brain connections are immensely complex. The

Human Connectome programme (Van Essen et al., 2013) has absorbed substantial

funding and manpower in order to make progress in understanding the macroscopic

wiring diagram. The two types of information that are currently sought are the brain’s

“structural connectivity,” discovered using diffusion-weighted MRI (Turner et al.,

1990; Wedeen et al., 2012); and its “functional connectivity,” which reveals itself

as spatial correlations within time series of functional images obtained while no overt

task is performed (so-called “resting-state fMRI,” Biswal et al., 1995). The chief vir-

tue of these techniques is that they can be applied in a living human subject, so that

brain functional activity can be correlated directly, subject by subject, with its neu-

roanatomical substrate and putative neural network. For genetic, developmental, nu-

tritional, environmental, and experiential reasons, all human brains differ somewhat

in their anatomy and organization. In healthy brains, the main anatomical divisions

are well conserved, but the shapes and sizes of the components can differ strikingly.

To develop realistic models of brain function some precision regarding pathways is

surely required, and so connectivity data drawn from a different brain, perhaps that of

a cadaver or an average brain summarizing data from many subjects, must be

regarded as insufficient. Mechanisms only operate in living individual subjects.

However, neither of these methods (tractographic) for discovering brain connec-

tions is close to a gold standard. The first method, using diffusion-weighted imaging

(DWI) to infer axonal pathways in white matter, has very serious limitations due to

the relatively poor spatial resolution (at best 1.5 mm using conventional 3 T MRI

scanners) and the difficulty of discriminating the directions of different axonal fiber

bundles in the frequent regions where they cross each other (Jones et al., 2013).

These issues are to a large extent problems of inadequate data, and improvement

is found when more specialized MRI equipment is used—higher field strength, such

as 7 T (Heidemann et al., 2012a), and more powerful magnetic field gradient coils

(Setsompop et al., 2013). Nevertheless, there may well be configurations of axonal

pathways that MRI techniques can never successfully trace (Thomas et al., 2014). By

comparing their high-resolution DWI animal brain data with the ground truth derived

from axonal chemical tracer techniques, these authors show that the best result one

can achieve is a compromise between substantial numbers of false-positive tracts and

false-negative tracts, depending on the statistical thresholds used in computing the

pathways. The best possible information about a typical cadaver brain, obtained

using gold standard methods such as the use of tracers, can help to resolve ambigu-

ities in the DWI data.
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Wedeen et al. (2012) have proposed basic principles of white matter organization,

in which fibers are arranged in sheets, which cross close to orthogonally and can be

grouped roughly into posterior/anterior, left/right, and superior/inferior categories.

Evidence for these concepts can be found from developmental neuroanatomy

(Nieuwenhuys and Puelles, 2016). If they can be fully confirmed by experiment,

the task of establishing the connectome for each individual human brain will become

much easier.

The second method, functional connectivity, is more problematic at the concep-

tual level, although the raw data are relatively easy to obtain in a fewminutes of scan-

ner time. As yet there are no firmly grounded explanations of the observed

phenomenon that regions of the brain which are spatially separate exhibit strong tem-

poral correlations at time scales of a few seconds. Thus inference of connections

from resting-state fMRI (rs-fMRI) data remains speculative. For fairly obvious rea-

sons, the DWI-based connectome is not likely to match the rs-fMRI connectome very

precisely, so the one cannot be used to cross-validate the other.

In summary, at this point in time, many of the major white matter pathways can be

identified in individual living human brains, and some of these can be tracked with

confidence into their terminations in gray matter. Methods are under development to

quantify the uncertainty of the location of these terminations. (Note that probabilistic

tractography (Behrens et al., 2003) does not provide this information—see discus-

sion in Jones et al., 2013.)

4 MRI, BRAIN FUNCTION, AND NEUROANATOMY
Since the discovery of functional MRI in the early 1990s (Kwong et al., 1992; Ogawa

et al., 1990; Turner et al., 1991), MRI has progressed from its earliest role as a ra-

diological diagnostic modality to become an indispensable tool for cognitive neuro-

science. Perhaps not surprisingly, the excitement that functional MRI could

noninvasively provide usefully high spatial and temporal resolution maps of human

brain activity was balanced by a comparatively lesser degree of interest in MRI’s

ability to provide excellent details of individual brain anatomy. Normal neuroana-

tomical differences tended to be regarded as nuisance variables, and techniques were

developed to warp individual brains into the same template fiducial brain, assuming

that once the gross anatomical differences between brains were taken care of, the

positions of their functionally specialized regions would more-or-less coincide.

But with the introduction of higher magnetic field MRI scanners, especially at

7 T, submillimeter spatial resolution became available, and fine anatomical details

have been demonstrated with astounding clarity and precision, to the point that

in vivo MRI images can sometimes bear a close resemblance to stained histological

sections. Turner has summarized progress in delineating these neuroanatomical de-

tails in an encyclopedia article (2015), from which the following paragraphs are

excerpted.
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4.1 SOURCES OF MRI CONTRAST
MRI sequences sensitive to the longitudinal relaxation time T1 of water protons

provide brain images with excellent gray/white matter contrast. The pioneering

work by Koenig (1991) and Kucharczyk et al. (1994) showed that the large dif-

ference in T1 between gray matter and white matter could be explained almost

entirely by the greater concentration of myelin in white matter. Furthermore, this

difference was shown to arise very largely from specific components in myelin—

not from proteins and phospholipids but instead from the abundant membrane

lipids cholesterol and cerebroside.

Not all longitudinal (T1) relaxation can easily be explained in this way. Paramag-

netic contrast agents, such as manganese chloride and ferritin, relax spin magne-

tization through the local rapidly varying magnetic fields with frequency

components at the Larmor frequency that they provide due to thermal vibrations.

Where such materials occur naturally in brain tissue, for instance, ferritin in the

basal ganglia and in cortical myelin (Fukunaga et al., 2010), they will also con-

tribute to T1 relaxation. Recent work by St€uber and coworkers (St€uber, 2014)

comparing quantitative MRI of T1 and T2* with proton beam microscopy of

the elemental composition of slices from the same block of cadaver brain tissue

has revealed that T1 depends only weakly on iron content but strongly on myelin

content.… (Thus) measurements of the relaxation rate R1 (1/T1) provide a quite

reliable guide to the amount of myelin present in a voxel of healthy cortex or white

matter, with rather less confidence in iron-rich deep brain regions such as the

putamen, red nuclei, and substantia nigra.

In recent years … attention has been paid by researchers to the assessment of

myelin density using the techniques of MTR and imaging of myelin water fraction

(MWF). MTR uses the phenomenon, discovered byWolff and Balaban (1989), that

excitation of protons attached to large molecules within the tissue causes more

rapid relaxation of neighbouring free water proton spins. Because this process

also depends on good coupling between the relevant macromolecules and free wa-

ter molecules, one can expect a very similar spatial dependence to that of T1. The

highly relaxing molecules of cholesterol and cerebroside are again likely to dom-

inate (Ceckler, 1992; Koenig, 1991). Maps of MTR (e.g., Dortch, 2013) appear to

be almost identical to maps of R1 (Weiskopf, 2013). Efficient MTR mapping has

been developed extensively by Helms et al. (2010), but the signal to noise avail-

able per unit time is inevitably lower than that achievable with quantitative T1

mapping methods, such as MP2RAGE (Marques et al., 2010).

But both of these methods may turn out to be less accurate for estimation of myelin

content than the third possibility, MWF (MacKay, 1994; Zhang, 2015). Myelin

water fraction mapping uses T2 relaxometry, in which spin-echo images are ac-

quired over a wide range of echo times. The data are analyzed to reveal a spec-

trum of T2 values, which cluster into relatively narrow peaks that can readily be

identified as arising, respectively, from relatively free extracellular and
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cytoplasmic water and water trapped between the layers in the myelin sheaths.

The partial volumes of these compartments can be estimated quite accurately,

and one can be confident that the myelin water fraction corresponds closely to

the total amount of myelin. When the maps that are expected to correspond to my-

elin density acquired by each of these methods are compared, a problem appears.

Maps of MWF show much greater inhomogeneity throughout the white matter

than do T1 maps or MTR maps. Histograms of T1 and MTR are very sharply

peaked at values corresponding to white matter, with a variance of perhaps

20%, but MWF values can vary systematically by a factor of up to two from region

to region (e.g., Zhang et al., 2015). Clearly, these methods are measuring different

aspects of myelin. However, once a suitable model has been developed, combining

results from MWF and T1/MTR mapping may offer a simple opportunity to infer

maps of other aspects of white matter myelin, such as the mean number of wraps

and perhaps the mean axonal diameter.

In addition to mapping myelin noninvasively, MRI is also a powerful means of map-

ping brain iron (Drayer et al., 1986). The putamen, the substantia nigra, and the habe-

nula (Strotmann et al., 2014) are rich in iron and are distinguished using MRI

sequences which use a gradient echo to prepare the signal for acquisition. Such se-

quences deliver maps of the MRI parameter T2*, which describes the speed of the

free induction decay, and also quantitative maps of magnetic susceptibility (QSM)

(Marques and Bowtell, 2005) each of which provides interpretable information re-

garding the concentration and the spatial distribution of iron atoms within brain tis-

sue. Ferritin is also often colocated with myelinated axons within the cortex, hence

iron-sensitive images can have a synergetic effect with myelin in discriminating cor-

tical areas (Duyn et al., 2007).

4.2 SPATIAL RESOLUTION
Returning to the question of granularity, it is important to recognize the spatial scale

at which useful information can be available using the conveniently noninvasive

techniques of MRI. The spatial resolution achievable in human and other animal

brains depends on the desired signal-to-noise ratio (SNR), the magnetic field

strength, the quality of radiofrequency receiver coils used, the type of MRI pulse se-

quence employed, and the scan duration.

To provide interpretable data, the SNR normally must exceed 10, and for some

purposes a value of 100 or greater is needed. The SNR increases with magnetic field,

with an exponent measured at 1.65 (Pohmann et al., 2016). Currently, the highest

magnetic field strength that is routinely available for scanning human brain

in vivo is 7 T, although good results are starting to be achieved using

9.4 T. However, engineering and safety challenges discourage the use of field

strengths above 9.4 T for systematic imaging neuroscience purposes.

The good performance just mentioned depends critically on high quality radio-

frequency hardware. In particular, receiver coils comprising many small elements
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(up to 128), each separately connected to the required preamplifiers and filtering cir-

cuits, can provide enhanced performance. Such multielement coils also allow much

more rapid data acquisition because the inhomogeneous receptive fields of each coil

can provide additional spatial data for image formation (Setsompop et al., 2016).

To take fullest advantage of the intrinsic SNR of the MRI scanner, the pulse se-

quence used to acquire image data must be wisely chosen. The current trend is to

select sequences that provide quantitative maps of the tissue parameters accessible

to MRI: the water proton density, the longitudinal and transverse relaxation times,

the effective diffusion constant of water molecules, the magnetic susceptibility,

and the voxel-by-voxel volume of cerebral blood. Sequences with a relatively high

spin flip angle, and which use most of the scanning time in performing data acqui-

sition, give the highest SNR. This indicates the use of high spatial resolution, high

flip-angle techniques such as echo-planar imaging (EPI) and gradient echo and spin

echo (GRASE) imaging, both for functional brain imaging (Goense et al., 2016;

Heidemann et al., 2012b; Huber et al., 2015) and also for structural imaging

(Renvall et al., 2016; Trampel et al., 2014).

Scan duration is also a factor in voxel size. In principle, given enough time, most

MRI scanners can produce images with better than 100 mm resolution, but to harvest

enough SNR at such a resolution can take several days of scanning, feasible only with

cadaver brain tissue. With advanced methods of avoiding effects of head motion dur-

ing scanning (Zaitsev et al., 2006), the option has become available of splitting the

acquisition into several sessions, to improve the SNR, but so far this has been little

used. More typically, a total of about 90 min scanning time is seen as acceptable for

human volunteer subjects. To achieve the best results, the blurring effects of invol-

untary head motion, even as little as a fraction of a millimeter, must be corrected.

Several methods have now been successfully demonstrated. Markers can be attached

to the head, and tracked with infrared cameras (Schulz et al., 2012; Zaitsev et al.,

2006), and the resulting movement parameters can be fed back to the scanner prior

to each excitatory radiofrequency pulse, enabling an update of the slice positioning to

follow the head and thereby providing prospective motion correction. The received

NMR signal from the scalp fat itself carries information about head movement,

which can be used for the same purpose (Federau and Gallichan, 2016).

The current resolution capability in human brain at the field strength of 7 T stands

at about 300 mm isotropic resolution for structural brain images (Federau and

Gallichan, 2016), and about 500 mm resolution for functional brain images.Measure-

ment of water diffusion in the brain, useful for assessing brain connectivity, has in-

trinsically lower sensitivity, and the best resolution yet achieved in living human

brain is about 800 mm (Heidemann et al., 2012a).

Crucially, for these three variables, structural, functional, and connective, the res-

olution is substantially finer than the cortical thickness. This level of technological

progress constitutes a tipping point (in our view), a breakthrough in the feasibility of

realistic and effective modeling of human brain function. Sections 4.3 and 4.4 de-

scribe why imaging at this spatial scale is so important.
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4.3 IN VIVO HISTOLOGY
Recalling the earlier remarks about cortical cytoarchitecture and myeloarchitecture,

it is important to stress that the features characterizing the identity of specific patches

of cortex are generally discernible on the scale of a few tens of microns.While higher

resolution (better than 1 mm) is normally used for cortical parcellation with micros-

copy of cadaver brains, the cytoarchitectonic techniques used by Zilles (Schleicher

et al., 1999) and the J€ulich neuroanatomy laboratory effectively take local averages

of neural density, comparing the moments across the cortical thickness of this “gray

value” density along the cortical surface in order to detect discontinuities that beto-

ken a cortical area boundary. While the myeloarchitectonic distinctions elaborated

by Vogt and his team (1919) relied on qualitative changes of the proportion of radial

and tangential fibers, and the extent to which the radial fibers penetrate the cortex as

they course outward from the white matter, most of these features can also be visu-

alized at a spatial scale of tens of microns. The most salient feature visible in the

entire cerebral cortex is the heavily myelinated Stria of Gennari, discovered by

the Italian neuroanatomist Gennari in 1782 (Gennari, 1782), which forms a sheet lo-

cated halfway through the cortical thickness in the primary visual cortex, located in

the posterior occipital lobe. This feature can be seen with the naked eye. Thus it need

not be regarded as hopelessly ambitious to consider many cortical areas to be distin-

guishable in vivo with MRI, provided that this technique can be made sensitive to the

relevant markers.

Section 4.1 described the striking capability of MRI for delineating patterns of

myelination and tissue iron. Together, without further technical developments, map-

ping of these substances can discriminate dozens of brain areas in vivo, provided that

spatial resolution is better than about 0.5 mm (Alkemade et al., 2013; Deistung et al.,

2013; Tardif et al., 2015). Myelinated cortical layer structure has been observed

using MRI in primary visual cortex (e.g., Trampel et al., 2011), extrastriate visual

areas V5/MT and V3a, anterior cingulate cortex, and primary somatosensory cortex.

Differences in their layer dependence of myelination is very likely to greatly extend

the number of areas identifiable in vivo using myelin mapping, beyond those enu-

merated by Glasser and Van Essen (2011), Sereno and Huang (2014), and Tardif

et al. (2015).

To extend the classification of brain tissue yet further, further strategies have

been suggested. Use of diffusion-weightedMRI techniques can provide a roughmea-

sure of dendritic density (Jespersen et al., 2007), which has been implemented in the

form of the NODDI method (Zhang et al., 2012). Nagy et al. (2013) and Morris et al.

(2016) have shown that diffusion imaging can also parcellate the cortex. Cortical

layers can be detected in cadaver brain using very high-resolution tractography

(Leuze et al., 2014), and recent efforts by Aggarwal et al. (2015) have revealed

region-specific diffusion signatures for Brodmann areas 9, 4, 3b, 17, and 18. Cerebral

blood volume varies between cortical areas (Michaloudi et al., 2005; Zheng et al.,

1991), and it can be straightforwardly mapped using MRI techniques (Uh et al.,

2009). Measurements by LaManna et al. (1992) and others of capillary angiogenesis
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show that cortical capillary density is driven by demand, through the secretion of

vascular endothelial growth factor when brain tissue becomes hypoxic. However,

no systematic effort has yet been made to employ CBV mapping for cortical

parcellation.

To summarize, at the present time, one can be cautiously optimistic that many

more of the cortical areas identified in cadaver brain tissue by Vogt, Brodmann,

and more recently the Zilles laboratory in J€ulich, will be observed using structural

MRI methods in the brains of living subjects.

4.4 FUNCTIONAL MRI, LOCAL CONNECTIVITY, AND CAUSAL
DIRECTIONALITY
The main purpose of the study of neuroanatomy is to provide a basis for the under-

standing of brain function. It is not enough to tease out the detailed structure of some

part of the brain: it is vitally necessary to discover what task it performs. Thus func-

tional mapping of the brain should aspire to the same level of detail as the structural

images obtained. At the field strength of 7 T, as previously mentioned, a voxel size of

0.5 mm is practicable for functional BOLD images, which is not much greater than

the 0.35 mm voxel size for anatomical images.

Contrast in BOLD images arises from variations in the blood concentration of

deoxyhemoglobin, which is more paramagnetic than surrounding tissue and there-

fore decreases the MRI signal. This occurs when the signal is formed by a gradient

echo, or by a spin echo with a sufficiently long echo time. There is debate on the

comparative merits of GRASE BOLD (Sanchez-Panchuelo et al., 2015). Spin echo

appears to provide better localization, but at the cost of signal to noise (SNR). The

gradient echo BOLD signal is sensitive to oxygenation changes over a wide range of

vein diameters, even in pial veins lying on the surface of the brain some distance

downstream from the neuronal tissue supporting the activation (Turner, 2002). Thus

its dependence on cortical depth is not easy to interpret as resulting from layer-

dependent neural activity (Heinzle et al., 2016; Markuerkiaga et al., 2016). Greater

spatial confidence can perhaps be placed in functional MRI data using the spin-echo

technique (Boyacioğlu et al., 2014; Goense and Logothetis, 2006), which is prefer-

entially sensitive to oxygenation changes in smaller vessels.

Of especial note is an alternative technique known as VASO (vascular space oc-

cupancy), which provides a usefully quantitative measure of changes in cerebral

blood volume (Lu et al., 2003), and is insensitive to changes in blood oxygenation.

Besides the great advantage of being quantitative, allowing comparison within and

across subjects and sites, the VASO functional signal appears to reflect the highly

localized control of blood volume provided by pericytes (Hall et al., 2014), cells that

surround arterioles and capillaries and regulate their blood flow (Hamilton et al.,

2010). Thus in functional studies, the VASO signal is often maximal in the middle

layers of the cortex, where the neural activity is maximal (Huber et al., 2015), as was

found earlier using fMRI with iron-based contrast agents indicating blood volume

(Goense et al., 2016; Zhao et al., 2006).
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The revolutionary implications of the ability to evaluate cortical layer-dependent

brain activity in vivo can be summarized as follows. Prior neuroanatomical knowl-

edge of neuronal circuitry is often available, for each cortical area (e.g., Mao et al.,

2011). Histology and animal brain research defines the cortical layer specificity of

input and output pathways. For instance, input axons arriving from thalamic nuclei

generally form their main synaptic connections with dendrites belonging to neurons

in cortical layer IV. Activity in input layers can be driven by experimental condi-

tions, and the effects of activity in output layers reveal themselves in experimentally

observable behavior. The evidence of brain activity measured using functional MRI

has been firmly associated with electrical activity taking place postsynaptically in the

dendritic arborization (Logothetis, 2002). Whenever fMRI spatial resolution can dis-

criminate input and output cortical layers, causal relationships between brain areas

might thus be empirically validated.

Examples open to empirical experimentation include: motor imagery vs

actual motion (primary motor area M1), visual imagery vs actual vision (primary

visual cortex V1), auditory imagery vs actual hearing (primary auditory cortex

A1), and touch experienced vs touch observed (a subset of primary somatosensory

cortex, BA1).

Beyond the primary sensory brain areas for which thalamocortical inputs dom-

inate, one can also consider cortical regions where the input layers of top-down

and bottom-up afferents are spatially separated within the cortical thickness. Here

also a causal direction might be established for the neural activity corresponding

to a given task. There are many experimentally accessible instances: cross-modal

vs unimodal stimulation, top-down vs bottom-up attentional modulation, and self-

motion vs other-motion in mirror-system brain areas.

In their pioneering study, Trampel and coworkers (Trampel et al., 2012, Turner,

2016) measured activation in the hand area of human primary motor cortex. They

used BOLD fMRI to study activation for three motor tasks: finger tapping, finger

movement without touch, and motor imagery. The experimental design was based

on the fact that the output to the corticospinal output tract of motor nerves from agra-

nular primary motor cortex M1 arises almost entirely from large pyramidal neurons

in layer V. The primary motor cortex was unambiguously identified by its anatomical

location and high myelin content, indicated by its characteristically short T1. At 7 T

structural data were obtained with 0.5 mm isotropic resolution, and fMRI data with

0.75 mm isotropic resolution. Cortical activation profiles specific to each motor con-

dition were computed from the data, and averaged across the activated area at four

different cortical depths, and across nine human volunteer subjects. The crucial find-

ing from this study is that during the motor imagery condition, the BOLD signal at a

depth corresponding to cortical layer V was comparatively smaller than the signal

from other cortical layers in this condition. In this condition, with no motor output,

this output layer would be expected to show a relatively lower activation signal—as

was indeed observed. Fortunately, the cortical thickness in M1 is unusually large,

about 4 mm, which facilitated the discrimination of specific cortical layers

using fMRI.
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In the more challenging context of primary visual cortex V1, Kok et al. (2016),

also using gradient echo BOLD, have been able to discriminate layer-dependent ac-

tivation associated with veridical visual perception from that related to illusory con-

tors produced by the Kanitza illusion.

As mentioned earlier, however, the BOLD signal represents the history of blood

oxygenation changes as blood travels from the pial arteries into the diving arterioles

and hence into capillaries and veins. Its cortical profile represents a spatial convo-

lution of task-driven changes in oxygen extraction with local blood flow, modulated

by changes in blood volume, which blurs out the layer dependence of underlying

neural activity. As such, this signal cannot provide a precise layer-specific indication

of oxygen extraction. In the study just described, the statistically highly significant

difference found in cortical profiles between the tapping and motor imagery condi-

tions is noteworthy, but should not be overinterpreted.

More confidence can be placed in assessment of functional activity by means

of observing changes in CBV, for instance using VASO. Cortical layer-dependent

high-resolution VASO appears to capable of distinguishing afferent and effe-

rent functional connectivity. In a very recent report, Huber et al. (2016) hypothesize

that individual layers should show different resting-state signal fluctuations

(Polimeni et al., 2010) and hence different brain connectivity patterns. They used

VASO fMRI acquisition and a clever analysis method to measure layer-dependent

resting-state fluctuations, to show directional functional connectivity from primary

sensory cortex (S1) to primary motor cortex (M1), which was validated with task-

based fMRI measurements. Such studies offer considerable optimism that the causal

directionality of links between many brain areas can be objectively evaluated.

5 DATA-DRIVEN FUNCTIONAL CATEGORIZATION
Having described strategies for empirically identifying the material components of

the brain treated as a system, and experimental techniques that offer the possibility

of defining the causal links between these components, we return now to the task of

defining their teleological functions, as discussed in Section 2.2. Given the existing

confusion arising from ascribing functions drawn from traditional psychology, folk

psychology, and psychoanalysis, it is attractive to replace these functional ontologies

with a set of functions that is more data driven.

One possibility is to assemble a catalog of the transformational capabilities of

cortical networks, once the anticipated results of the European Human Brain

Programme have become available, perhaps an enrichment of the types of logical

operations performed by silicon-based electronic components (AND gates, etc.).

However, these data are not yet available, and in any case such an ontological catalog

may still be far from useful in building the desired bridge between system and cell. It

is becoming clear that a more practical opportunity for data-driven typologies of

function can be generated using the methods of imaging neuroscience.
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5.1 REPRESENTATIONAL MODELS
Representational models (Diedrichsen and Kriegeskorte, 2017) are intended to ex-

plain how activity patterns in populations of neurons (or, more generally, in multi-

variate brain activity measurements) relate to sensory stimuli, motor actions, or

cognitive processes. Experimentally, in imaging neuroscience, representational

models can be defined as probabilistic hypotheses about what profiles of activations

across conditions are likely to be observed. At this point in time there are basically

three methods to test suchmodels—encodingmodels (otherwise known as voxelwise

modeling, VM), pattern component modeling (PCM), and representational similarity

analysis (RSA).

The hallmark of VM is an explicit model of representation, known as an encoding

model. Formally, an encoding model proposes a set of sensory or cognitive fea-

tures and specifies how these features are transformed into a prediction of brain

activity for the experiment under consideration. A given set of features represents

an explicit hypothesis about the representation encoded in the brain. This hypoth-

esis is tested by evaluating how much variance in measured activity the encoding

model explains. Competing hypotheses can be adjudicated by comparing the

amount of variance explained by different encoding models. Alternatively, hy-

potheses can be assessed by comparing howwell a representational similarity ma-

trix (e.g., a matrix with correlations between pairs of experimental conditions)

constructed from a set of features matches the representational similarity matrix

constructed from the measured activity. This approach, called ‘representational

similarity analysis’, imposes fewer constraints on the mapping between features

and brain activity [12]. In both cases, hypotheses are tested by evaluating explicit

models of representation.

Naselaris and Kay (2015)

This approach for modeling fMRI data typically begins with providing the experi-

mental subject with a very large number of related stimuli or tasks, often naturalistic.

These are analyzed to generate a large set of features, which comprise a training data-

set then used to compile a separate model for each recorded voxel in the functional

brain images. Essentially, the goal is to determine the functional repertoire of each

gray matter voxel, as encompassed by a model that characterizes the “feature space”

of the stimuli. The correctness and completeness of the model in predicting brain

activity to new stimuli can be tested on a separate validation dataset (Naselaris

et al., 2011). Remarkable cortical maps, for instance, depicting the space of semantic

categories (Huth et al., 2016) have been generated using these methods. For such

purposes, spatial smoothing would be quite unacceptable. Hence this technique lends

itself to research in which myeloarchitecture, cytoarchitecture, and functional reper-

toire can be directly compared.

In the present formulation, the proposed (or inferred) sensory or cognitive fea-

tures that best predict neuroimaging data can be considered to embody the teleolog-

ical functions of the brain components that support them. These features themselves

2075 Data-driven functional categorization

Author's personal copy



can be suggested by the use of deep learning analysis (Marblestone et al., 2016),

using multilayer neural network methods to provide parsimonious accounts of what

usefully distinguishes one experience or action from another. The explanatory power

of these features can be explicitly tested using neuroimaging data. In this framework,

the catalog of such features can be regarded as minimizing some definition of cost—

neatly conforming to the requirement of Piccinini that a teleological function must

contribute to the survival of the organism. Cognitive neuroscience may benefit from

deeper understanding of these data-driven insights into the categorization of experi-

ence and action, which may avoid the Procrustean tendency to force our experience

into predefined inherited conceptual frameworks that may have little affinity with

how brains actually operate (Turner, 2012).

5.2 POPULATION RECEPTIVE FIELDS (DUMOULIN AND WANDELL)
The population receptive field mapping approach (Dumoulin and Wandell, 2008)

estimates a model of the population receptive field for voxels in visual cortex that

best explains measured fMRI responses resulting from a series of various visual stim-

uli. This can be regarded as a special case of voxel encoding, applying specifically to

visual stimuli and visual cortex.

Results using these approaches reveal that specific features of experience often

have widely distributed spatial representations in the brain. However, clustering can

also be noted, often in accordance with linguistic or common-sense categorization of

experience and action. The features of lived experience—sensory, decision making,

emotional, and rational—that emerge from this research strategy may well be best

characterized as the affordances of such experiences—because it can be argued that

affordances are what we are evolved to remember. And features which are affor-

dances are good candidates for being teleological, in Piccinini’s sense.

6 CONCLUSIONS: THE PROSPECTS OF LINKING CELL AND
SYSTEM
In this section, we review the above-discussed criteria that characterize a satisfactory

biological mechanistic model. We show that current modeling practice in systems

neuroscience very often fails to meet these criteria, due to an absence of insight re-

garding the importance of neuroanatomy and an ensuing misguided strategy for im-

age data preprocessing and statistical analysis. We summarize the proposed new

strategy, now feasible using 7 T MRI scanners, for developing mechanistic models

at the systems level: identifying the experimentally accessible components of the

brain, which can incorporate prior knowledge of their cellular makeup; the links be-

tween these components; and the ascribing of teleological functions to these compo-

nents. We conclude with a discussion of the extent to which a model formed in this

way conforms to the recommendations of Piccinini and Craver.
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The criteria for effective mechanistic modeling, described in detail in Sections

2.1 and 2.2, can be summarized as follows:

(i) Mechanisms are multilevel.

(ii) Mechanisms explain the behavior of the mechanism as a whole in terms of the

organized activities of its component entities.

(iii) The operations within a mechanism are different from the phenomena

produced by the mechanism.

(iv) The spatially, temporally, and actively organized components of a lower-level

mechanism can constitute the components of a higher-level mechanism, which

is itself something greater than a mere sum of these component parts.

(v) A mechanistic explanation should account for the multiple features of the

phenomenon, including its precipitating conditions, manifestations, inhibiting

conditions, modulating conditions, and nonstandard conditions.

(vi) Mechanistic brain modeling must robustly identify teleological functions at the

level of the organism which can be described at the next lower level in terms of

measurable interactions between well-defined components.

(vii) Mechanistic models of the brain must be consistent with what neurons can

actually do.

Current practice in human systems neuroscience was developed by leading imaging

neuroscience laboratories in the late 1990s, and attempted to link brain location, neu-

roanatomy, and function at a spatial scale of about 8 mm, about as close as anyone

then dared to expect that corresponding cortical areas could be located across brains.

A strategy of spatial smoothing of the raw fMRI images, using a Gaussian smoothing

kernel of typically about 8 mm, was fundamental to this approach. This had the fol-

lowing very important benefits: (a) it often considerably improved the signal to noise

(SNR) of functional data; (b) after structural brain images had been spatially normal-

ized into a standard template brain registered within MNI space, it allowed for the

residual mismatch of actual cortical areas, so that positive results could be antici-

pated from group averaging across normalized brains; and (c) it enabled very simple

analytic equations (Worsley et al., 1992) to be used for assessing the statistical sig-

nificance of measured brain activity, and thus for thresholding the resulting group

images to provide spatial activation maps.

However, this strategy has two severe failings (Stelzer et al., 2014). The spatial

smoothing of functional imaging data prior to further analysis leads to a prevalence

of false assignments of “activated” voxels to anatomical locations where there is no

credible evidence of activity, and to a dramatic loss of knowledge regarding the re-

lationship of brain activity to its neural substrate.

Numerous attempts have been made to develop mechanistic models (for instance

Dynamic Causal Modelling, Friston et al., 2003) at the level of the statistical

parametric maps generated by this analysis strategy. Lip-service is paid to the

details of neural circuitry, which by default are considered to be homogeneous

throughout the cortex, following the assumption that no further information
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can be obtained in vivo. The concept of ‘neural mass modelling’ is invoked to take

care of the role of individual neurons—these are lumped together in their millions,

and substituted by a single equivalent neuron at the centroid of the large fuzzy

blob vaguely demarcating the site of the brain activity.

Recall that a successful mechanistic model requires definition of components, their

separate functions, and the interactions between them. Because current models are

multilevel only in intention, but ignore the details of individual brain neuroanatomy,

a cursory glance at the above list of criteria for mechanistic models reveals that they

are obviously incapable of satisfying most of them. To spell this out:

(a) The model components are typically ill-defined, relying on probabilistic atlases

of brain anatomy produced using incompletely validated methods of cortical and

subcortical parcellation of cell-stained histological slices from no more than

10 cadaver human brains. It is only occasionally possible to identify the activity

detected using fMRI methods with a specific neural substrate. Much of the time,

assignment of activity to named brain regions is no more than informed

guesswork.

(b) The network of interaction between the components, the way in which they are

organized, is also poorly defined. Researchers use putative connections derived

from much older cadaver brain studies, connections derived from tractography

diffusion-weighted MRI data, with a single-tensor approximation (Jones et al.,

2013), and functional connectivity presumed from rs-fMRI data, often smoothed

and averaged across many subjects. It is unlikely that the important connections

in any particular subject’s brain actually follow the course assumed by any of

these strategies.

Furthermore, the directionality of any of these connections is very hard to

deduce. Attempts have been made using the methods of Granger causality to

infer directionality from the time course of the BOLD signal in different brain

areas (Roebroeck et al., 2005), but the lag of several seconds between neural

activity and the ensuing BOLD signal, which varies spatially, makes such

inferences very hard to sustain (Smith et al., 2012). Dynamic causal modeling

also attempts to deduce causal directionality, but this method relies for

computability on a far too simplistic graph-theory model of brain activity, in

which only a very small number of nodes participate for any given task

(Lohmann et al., 2012). The precisely delineated features of human

neuroanatomy are summarily neglected.

(c) In current common practice, the functional role attributed to the model

components (to the extent that they are unambiguously defined) often exhibits

the mereological fallacy, which consists of ascribing to portions of the brain

psychological concepts that only make sense when ascribed to whole human

persons (Bennett and Hacker, 2003). While studies of the effects of brain lesions

on task performance (such as the classic injury to Broca’s patient, leading to the

idea that there is a delimited “language area”) encourage the idea that mental

tasks can be localized in specialized brain tissue, it is obviously wiser to try to
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find less question-begging descriptors of brain areas until a mechanistic model is

validated that demonstrates the entire system whereby a human being produces

the behavior of interest. See criteria (iii) and (iv) in the list above.

So can the beautiful submillimeter data provided by much higher field MRI data pro-

vide surer ground for novel attempts to model the relationship between human be-

havior, linking the systems level, and the cellular level? Once again, we consider the

structure of a successful mechanistic model:

Brain components: In vivo, at the mesoscopic scale, submillimeter resolution

quantitative MRI (in particular mapping myelin and iron) can be used to parcellate

the cerebral cortex into territories that can be associated with known cytoarchitec-

ture. This parcellation can be guided by high quality histological studies and studies

of chemoarchitecture. Subcortical structures can also be discriminated with high pre-

cision using MRI techniques. All subsequent fitting of models should be performed

on an individual brain basis. Because the voxels are small enough to contain only

thousands of neurons, rather than millions, the opportunity exists for relating the cor-

tical structure within a voxel to its computational competence. Thus at the level of

components, criteria (ii) and (iv) are fulfilled.

Links between components: In vivo tractography using crossing fiber analysis,

guided by myelin stain histology and polarized light imaging in cadaver brain,

can be used to establish the major long distance neural pathways. Histological

and tracer studies in animals should be used to distinguish wherever possible the cor-

tical layers where efferent and afferent pathways terminate, for each identifiable cor-

tical area. Mechanistic models with causal relationships posited between the

components can thus be proposed. Such links satisfy criteria (ii), (iv), and (vii).

Teleological functions of each component: As far as possible, large batteries of
naturalistic stimuli for volunteer or clinical subjects should be used, together with

cost-minimization deep learning algorithms to propose relevant feature spaces.

The teleological functions for each brain component should be inferred from careful

analysis of the imaging data, in which clustering and tightly cross-correlated activity

play an important role. It should not be assumed that the inferred operations of each

component can be described by any of the competences of the system as a whole. The

conceptual framework of traditional experimental psychology should be considered

as at best a source of inspiration. The granularity of different brain areas can be

established empirically using submillimeter resolution fMRI. Causal directionality

between regions with well-established histology can be investigated using layer-

dependent VASO. All of the criteria listed are met when teleological functions

are ascribed at this spatial scale and level of organization.

If it is now granted that use of the available in vivo, submillimeter resolution,

neuroanatomical, functional, and connectivity MRI data allows finer grained and

far more plausible mechanistic models of the operations of the human brain at the

systems level, several questions remain.

(a) In regard to the level of detail, how much resolution is really required? The MRI

best resolution achievable is smaller than the typical width of a cortical column.
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But imaging neuroscience has been thriving with effectively 8 mm resolution,

although the variance explained in fMRI data by current modeling attempts is

often highly disappointing.

(b) Once techniques such as representational modeling and voxel encoding are

applied more systematically, will it always be possible to create realistic feature

spaces that reflect the self-organization of the brain resulting from probabilistic

learning?

(c) How many anatomically distinct brain areas, observable in vivo, will be needed

to provide relatively complete mechanistic models?

(d) How much improvement, in regard to model fits with greatly reduced variance,

will be found when brain functional activity and neural substrate are much better

aligned?

Addressing such questions, using models of brain function based on the proposed

components, interactions, and teleological functions and thereby finding robust

MRI-based biomarkers for observable abnormalities in patterns of cortical and sub-

cortical competences, should provide much firmer scientific ground for the under-

standing of psychiatric disorders.
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